
Practical Distributed Classification using the
Alternating Direction Method of Multipliers Algorithm

Peter Lubell-Doughtie and Jon Sondag
Intent Media

New York, USA
{peter.lubell-doughtie, jon.sondag}@intentmedia.com

Abstract—We describe a specific implementation of the Al-
ternating Direction Method of Multipliers (ADMM) algorithm
for distributed optimization. This implementation runs logistic
regression with L2 regularization over large datasets and
does not require a user-tuned learning rate metaparameter
or any tools beyond MapReduce. Throughout we emphasize
the practical lessons learned while implementing an iterative
MapReduce algorithm and the advantages of remaining within
the Hadoop ecosystem.

Keywords-distributed algorithms; distributed computing; op-
timization; predictive models

I. INTRODUCTION

When used at scale, statistical modeling algorithms need
to function correctly on large amounts of data in a practical
amount of time. In many cases production-scale datasets do
not fit into the memory available on a single machine and
the dataset needs to be distributed over a cluster.

The MapReduce programming model [1] allows clients
to run computations on large distributed datasets with com-
modity machines. Apache Hadoop is a well known, widely
used, and broadly supported MapReduce platform which
works with the Hadoop Distributed File System (HDFS) and
supports arbitrarily large datasets [2].

The ADMM algorithm [3] is a distributed convex opti-
mization algorithm that can be used to fit machine learning
models with convex loss—including linear regression, logis-
tic regression, and support vector machines—and L1 or L2
parameter regularization. We chose to implement ADMM
using Hadoop in order to benefit from the wealth of existing
Hadoop utilities and the community’s extensive knowledge.

Regardless of the problems concerning Hadoop’s support
for iteration [4], we show that Hadoop can be used to
implement an efficient iterative algorithm which is “good
enough” in the sense of [5]. That is to say, the benefits
of using a reliable platform that easily integrates with our
existing toolset outweigh the small increase in runtime per
job. To support iteration within Hadoop, we write data
from external storage to HDFS, which reduces network
latency when transferring large amounts of data. We also use
Hadoop’s Input Splits to persistently partition data between
mappers over multiple iterations.

Many challenging problem domains, for example click at-
tribution in online advertising, involve noisy observations of
sparse data. Modeling in these domains requires significant
amounts of data and an interpretable model. Here we focus
on logistic regression with L2 norm.

Traditional batch optimization algorithms for logistic re-
gression fit the model parameters iteratively and require that
the training dataset fit into memory for good performance.
ADMM also proceeds iteratively but solves an intermediate
optimization problem in parallel on subsets of the training
data, then combines the intermediate solutions to find a
consensus result at each iteration. The time-consuming and
memory-intensive intermediate optimization problems are
solved in parallel.

When executing long-running modeling jobs hand-tuning
parameters can be especially time-consuming. To avoid
this we use ADMM with methods that automatically tune
parameters while still guaranteeing convergence. This makes
for an easy transition from small-scale prototypes fit using
batch optimization methods on a sample of the dataset, to
large-scale models fit over the entire dataset.

Our main contribution is an adaptation of ADMM that
makes large-scale logistic regression user-friendly on a pop-
ular platform. Using our implementation, data scientists can
accurately fit models without tuning meta-parameters.

The rest of the paper is organized as follows. In section II
we formulate logistic regression using the ADMM algorithm
and describe the equations necessary to calculate interme-
diate values. Based upon the formulae and procedures we
develop, section III provides a brief review of MapReduce
and the necessary details concerning how to implement the
ADMM algorithm within Hadoop MapReduce. We present
the results of using ADMM to model a production scale
dataset of website visitors in section IV. In section V we
review recent work related to iterative optimization with
Hadoop, and in section VI we conclude.

II. PROBLEM FORMULATION

In this section we describe exactly how we formulate reg-
ularized Logistic Regression with ADMM. Given a matrix
of features A 2 Rm⇥n and a vector of their labels b 2 Rm

with b

i

2 {�1, 1}, our goal is to compute the probability
Pr(b

i

= 1|A
i

) for each row 1 i m. The first column of
the feature matrix represents the intercept and all values in
this column are set to 1.

In general, the (not necessarily distributed) convex model
fitting problem with regularization can be written as:

minimize
1

m

mX

i=1

l

i

(AT

i

x� b

i

) + r(x), (1)

where l

i

is the loss for training example i, r is a reg-
ularization term, and x 2 Rn is the vector that solves
the optimization problem and defines the logistic regression
model.

In the case of L2 regularized logistic regression the
problem becomes:

minimize
1

m

mX

i=1

log(1 + exp(�b
i

AT

i

x)) + �kxk22,

where � is the regularization factor.
If we reformulate the above in ADMM global consensus

form and reflect the partitioning of training examples across
N machines in the cluster, the problem becomes:

minimize
1

m

m1X

i1=1

log(1 + exp(�b
i1A

T

i1
x1)) + . . .

+

1

m

mNX

iN=1

log(1 + exp(�b
iNAT

iN
xN)) + �kzk22

subject to xj � z = 0, j = 1, . . . , N

where xj 2 Rn is the logistic regression fit on node j.
z 2 Rn is a variable representing the global consensus,
the vector of parameters that defines the model result. The
constraint, x

j

� z = 0, enforces equality of the parameter
estimates across machines.

The ADMM algorithm for the above problem is:

x

k+1
j

:= argmin

xj

1

m

j

mjX

ij=1

log(1 + exp(�b
ijA

T

ij
xj)) (2)

+

⇢

k

2

kxj � z

k

+ u

k

j
k22

z

k+1
:=

8
>><

>>:

x̄

k+1
q

+ ū

k

q

if q = 1

N⇢

k

2�+N⇢

k

(x̄

k+1
q

+ ū

k

q

) otherwise
(3)

u

k+1
j

:= u

k

j

+ x

k+1
j

� z

k+1
, (4)

where k is the iteration number, ⇢k is the penalty parameter
(see Section III) for iteration k, and x̄

q

represents the average
across all mappers of the qth element of the vector x̄ 2
Rn. Formally, x̄

q

=

1

N

P
N

j=1 xqj , and similarly for ū. The
first elements of x̄ and ū, x̄1 and ū1, correspond to the
intercept and are not regularized, therefore we must treat
them differently from the other values in the vector.

A
ij and b

ij are the portion of the data assigned to and
used in mapper j. The values of the xj are calculated in
parallel on the mappers while the values of z and u are
calculated on the reducer. The convex minimization problem
for each xj update is solved using the L-BFGS (low-memory

BFGS) method [6]. We use a Java implementation of L-
BFGS which is self contained and has performed well on
Hadoop nodes.1

III. IMPLEMENTATION

In this section we describe implementing ADMM for
Hadoop MapReduce and provide practical details relevant
to building models within a production environment. The
MapReduce model divides into three phases: the map, the
shuffle, and the reduce. In the map phase the input data
is split among a set of mappers and each mapper applies a
function to the set of data assigned to it. In the shuffle phase
the output of the mappers is assigned to a reducer. In the
reduce phase the mapper output is aggregated to create the
final values, which are then output by the reducer.

The map and reduce steps can be expressed as:

map (k1, v2) !list(k2, v2)

reduce (k2,list(v2)) !list(v2),

where each mapper has a unique key, k1. The shuffle is
concerned with mapping the intermediate key-value pairs,
(k2, v2), output by the mappers to the reducers [1].

To implement MapReduce in Hadoop we define classes
for the mapper and the reducer, along with a driver that han-
dles input arguments and specifies the mapper and reducer
classes (the shuffle is handled internally by Hadoop). In
the context of ADMM, each mapper performs the resource
intensive task of computing the current xj . After all mappers
have completed their computations, we use a single reducer
to compute the z and uj updates.

A. Persistent Data with Input Splits

When each mapper calculates the x

k+1
j

values on iteration
k + 1, it must use the u

k

j
values that were calculated for

the same mapper in the previous iteration. Hadoop does not
normally accommodate this sort of persistence. [3] suggests
using Apache HBase, a distributed data store, however
this would add a new component and its accompanying
complexity to the modeling framework.

As an alternative, we use Hadoop’s notion of input splits
to associate the correct xj and uj values with each other, and
with the location on HDFS of the data that they correspond
to. Input splits specify a split length and a split ID. These
respectively determine the size of the split data and which
node to use when performing computations on that data. To
ensure that the correct uj values are loaded when calculating
an xj value, the mapper reads the split ID and chooses the
u

i

values based on this split ID. The z values are the same
in each xj formula, i.e. across mappers. To reduce transfer
cost we replicate the current z values across all mappers at
the start of each iteration.

1https://code.google.com/p/vladium/

1: procedure ADMM(A, b, N , maxIterations)
2: k = 0

3: while notConverged and k < maxIterations do
4: for j = 1! N do
5: update x

k

j
using Eq. 2

6: end for
7: update z

k using Eq. 3
8: for j = 1! N do
9: update u

k

j
using Eq. 4

10: end for
11: update ⇢

k using Eq. 5
12: k k + 1

13: end while
14: write z

k to S3.
15: end procedure

Figure 1. The ADMM procedure implemented for Hadoop MapReduce.
notConverged is a helper function that evaluates the norms to check for
convergence.

B. Automatically Updating ⇢

We use the reducer to update the penalty parameter ⇢.
The number of iterations to convergence depends upon ⇢,
and hand-tuning it can take a significant amount of time
because we must often run the algorithm for some time to
determine the efficacy of the chosen value.

By varying ⇢ per iteration we can avoid spending time
hand-tuning ⇢. We use the scheme suggested in [3] to update
⇢ on each iteration:

⇢

k+1
:=

8
><

>:

⌧

incr
⇢

k if krkk2 > µkskk2
⇢

k

/⌧

decr if kskk2 > µkrkk2
⇢

k otherwise,
(5)

where r

k is the primal residual, sk is the dual residual, and
µ > 1, ⌧ incr

> 1, ⌧ decr
> 1 are user-specified parameters. We

have used the recommended values of µ = 10 and ⌧

incr
=

⌧

decr
= 2.

C. Considerations for MapReduce

Figure 1 shows the coordination algorithm for executing
the ADMM iterations. The feature matrix A, the vector of
target values b, the number of mapper nodes N , and the
maximum number of iterations maxIterations, are input
to the procedure. The procedure begins by initializing the
current iteration number to zero and passing control to the
driver. On line 3 the driver checks that the algorithm has
not converged and that the number of iterations is less than
the maximum number of iterations. We assume there is a
helper function notConverged, which returns true unless
krkk2 ✏

pri and kskk2 ✏

dual

.

If the driver has not converged and the maximum number
of iterations has not passed, we distribute the z and u

i

to
the mappers and begin the next iteration. Lines 4 through

Figure 2. The Job Runner sets paths for the input data, the output data,
the Jar file with ADMM, and the value of any adjustable parameters, e.g.
the number of iterations. ADMM computes and stores intermediate data in
HDFS, then after the final iteration, the problem solution (zk in ADMM
notation) is output to S3.

12 show the x

k

j

, zk, uk

j

, and ⇢

k updates that occur in the
mappers and reducer on each iteration. Alternatively, if the
while loop condition is false, the algorithm is complete and
we output the current vector of predicted weights, z

k, to
persistent storage and exit, as show on line 14.

The output data is written to, and the input data is read
from, Amazon’s simple storage service (S3). To reduce the
network latency involved in transferring data from S3 to
the MapReduce nodes, we store the data—feature matrix
A and target values b—directly on the nodes via HDFS.
An advantage of running Hadoop on Amazon’s Elastic Map
Reduce (EMR) service and using data stored in S3 is that
there are no transfer fees when moving data between these
two systems. The infrastructure workflow is shown in Figure
2.

Wherever feasible, we have made our implementation of
the ADMM algorithm generic. Arguments to the driver allow
users to exclude columns from the input data, optionally add
an intercept, set the initial ⇢, set the maximum number of
iterations, and set the input and output locations. We have
released an implementation of ADMM for Hadoop as an
open source Java library.2

IV. RESULTS

As part of our modeling pipeline, we run the ADMM
algorithm daily on rolling historical data consisting of ap-
proximately 25 million records with 440 features per row.
Our training examples are real vectors representing website
visit attributes and our labels are real scalars representing
each visits known value. The goal is to build a model that
accurately segments unseen visitors by predicted value based
upon their attributes.

As depicted in Figure 2, we load the data and a Jar
file containing the ADMM algorithm from S3 into EMR.
To evaluate the performance of our implementation of the
ADMM algorithm, we examine the output of one day’s run.
We measure performance by comparing the change in loss
function per iteration. We have also examined equivalent

2https://github.com/intentmedia/admm

Figure 3. The difference between the model’s predictions of the primal
objective values and the “true” value as approximated by the model after
many iterations. The loss decreases dramatically at first and then continues
to decrease during later iterations.

results from other days and verified that the results do not
vary substantially from day to day.

We plot the progress of our algorithm by showing that
the value we are minimizing in Equation 1 decreases per
iteration. Figure 3 shows this through the estimated loss in
primal objective value, which we calculate by subtracting
from the current primal objective value an approximated
minimum primal objective value taken after many iterations
(75 in this case). The estimated loss is plotted for each of
the first 30 iterations on a logarithmic scale. We see that the
loss decreases, and therefore that the accuracy consistently
improves as more iterations pass. On a cluster of 20 high
memory quadruple extra large EMR instances, 25 iterations
run in 1 hour and 25 minutes.

V. RELATED WORK

The algorithm and our implementation are based upon
[3], which introduced the ADMM algorithm. [4] presents a
more efficient approach to iterative computation in Hadoop
requiring modifications to core Hadoop code, which reduce
the time needed to transfer data and initialize MapReduce
jobs. This is not the approach we took as we remained
within the Hadoop ecosystem and avoided the ramp-up
costs associated with a less well known solution. Based on
our experience, MapReduce is “good enough” for ADMM
and logistic regression. We evaluate the cost as described
in [5], and conclude that the reduction in implementation
costs gained by using Hadoop outweigh the performance
improvements that could be gained by using a less well-
known platform.

[7] presents a MapReduce implementation of tree ensem-
ble learning and uses a wrapper for MapReduce to coor-
dinate iterations of the underlying algorithm. [8] presents a
distributed method for classification that is similar to random
forests. Apache Mahout contains an implementation of logis-

tic regression that uses stochastic gradient descent (SGD).3
As noted in [9], this SGD implementation is sequential,
which substantially limits the performance of the algorithm
and makes it difficult to scale. To address this, [9] presents a
scalable convex loss system that uses a Hadoop compatible
variant of MapReduce.

VI. CONCLUSION

Using an ADMM implementation for MapReduce allows
a simpler workflow when moving modeling ideas from
prototype to production-scale. We showed a specific example
of using the ADMM algorithm to build a logistic regression
model. Importantly, ADMM is a generic optimization algo-
rithm that can be applied to other problems with minimal
modification. Our contribution is a distributed implementa-
tion on Hadoop that allows users to experiment with many
different models at scale. In future work we plan to support
additional convex loss optimization problems.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” in Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation
- Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[2] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly
Media, Inc., 2009.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, Jan. 2011.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
efficient iterative data processing on large clusters,” Proc.
VLDB Endow., vol. 3, no. 1-2, pp. 285–296, Sep. 2010.

[5] J. Lin, “Mapreduce is good enough? if all you have is a
hammer, throw away everything that’s not a nail!” CoRR, vol.
abs/1209.2191, 2012.

[6] J. Bonnans, Numerical optimization: theoretical and practical
aspects, ser. Universitext (1979). Springer-Verlag New York
Incorporated, 2003.

[7] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “Planet:
Massively parallel learning of tree ensembles with mapreduce,”
in Proceedings of the 35th International Conference on Very
Large Data Bases (VLDB-2009), 2009.

[8] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,”
SIGMOD, 2012.

[9] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford, “A
reliable effective terascale linear learning system,” CoRR, vol.
abs/1110.4198, 2011.

3https://cwiki.apache.org/confluence/display/MAHOUT/Logistic+Regression

