
Model Selection: Beyond the
Bayesian/Frequentist Divide

I. Guyon, et al.

1

Discussion of approaches to model selection

especially with reference to the problem of over-fitting

and the similarities between approaches

outline

• introduction to model selection

• Bayesians and Frequentists

• multi-level inference

• advances in model selection

2

Inductive Bias ObservationsMapping

UniverseAll Models

learning as
model selection

• fitting parameters to some training data

• selecting the best model

3

implicitly assumes, learning is the same as model selection, is it?

can you learn without making models? without choosing models?

if we choose a ʻbetterʼ model have we done a ʻbetterʼ job learning?

ex: cross-validation, optimizing cost/loss functions

can’t we just average?
or minimize risk?

• your still doing model selection

ModelsInductive Bias

All Models

4

most model selection methods still have a hyper-parameter that’s optimized through cross-
validation

so, even in the principled Bayesian method of averaging over posteriors, or minimizing
performance bounds, we use cross-validation

can’t we just average?
or minimize risk?

• probably rely on cross validation somewhere

Observations

Train

Test

Validate

Selection

Universe

5

there’s no principled way to do cross-validation, e.g. choosing how to divide problem, how to
allocate data to divisions

treat hyper-parameters
as parameters?

• joint optimization is a non-convex problem

• joint optimization has infinite complexity

Training Evaluation Overfitting Optimising Data Usage Summary

1 Training
k-Nearest-Neighbours

2 Evaluation
Error measures: classification
Decision threshold
Error measures: regression

3 Overfitting
Introduction
Regularisation
Maximum a Posteriori
Bayesian learning

4 Optimising Data Usage
Cross-validation

5 Summary

Training Evaluation Overfitting Optimising Data Usage Summary

Introduction

Overfitting and Generalisation

Generalisation: learn, from known examples, about unseen
examples

Overfitting: learn properties from the given examples which
do not apply to unseen examples

Evaluate on separate set

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

Training Evaluation Overfitting Optimising Data Usage Summary

Introduction

Example: polynomial regression

Process: y = sin(2πx)

Observations: corrupted by

Gaussian noise def :

y = sin(2πx) + ξ

with

ξ ∼ N (0, 0.3)

Attempt to recover a

description of the process,

using a polynomial function

y = w0 + w1x + w2x
2
+ · · ·

-1

0

1

0 0.5 1

y

x

Process +/- 1 std. dev.
Process function

Training set
Test set

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

Training Evaluation Overfitting Optimising Data Usage Summary

Introduction

Illustration of overfitting

Example

-1

0

1

0 0.5 1

y

x

Generating function
Fitted polynomial

Training set
Test set

0

0.5

1

0 3 6 9

E R
M
S

M

Training
Testing

M = 9

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

Training Evaluation Overfitting Optimising Data Usage Summary

Introduction

More data

For fixed model complexity (in this case, M = 9), increasing the
amount of training data reduces overfitting

Example

0 1

!1

0

1

0 1

!1

0

1

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

Training Evaluation Overfitting Optimising Data Usage Summary

Regularisation

Weights and overfitting

M = 0 M = 1 M = 3 M = 6 M = 9
w0 0.19 0.82 0.31 0.35 0.35
w1 -1.27 7.99 2.62 232.37
w2 -25.43 32.10 -5321.79
w3 17.37 -206.27 48568.00
w4 399.00 -231637.92
w5 -332.71 640038.66
w6 105.16 -1061794.80
w7 1042394.73
w8 -557680.13
w9 125200.80

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

Training Evaluation Overfitting Optimising Data Usage Summary

Regularisation

Regularisation

Penalise overly flexible models

Add a penalty term to the objective function

Penalty term depends on model
Typically, penalise large parameter values

Example: Polynomial curve fitting

Ê (w) =
1

2

N�

n=1

(y(xn,w)− tn)
2

� �� �
Objective function

+
λ

2
||w||2

� �� �
Penalty

Parameter λ controls regularisation
“How much do you trust the data”
Must be set independently

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

Training Evaluation Overfitting Optimising Data Usage Summary

Regularisation

Regularisation

Example: Polynomial curve fitting

!35 !30 !25 !20
0

0.5

1
Training
Test

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M

6

considering the class of kernel methods

non-convex lose unique solution guarantee

with hyper-parameters we can bound capacity, yet still search in a class of universal
approximators

potentially alleviate over-fitting

we can structure
parameter space

• hyper-parameters lets us monitor bias/
variance tradeoff

• a regularizer enforces lower complexity

7

we can bound over-fitting with hyper-parameters

popular regularizers “weight decay” in NN, Gaussian processes, ridge regression, “hinge loss”

optimize hyper-parameter for regularizer at 2nd level of inference

considering linear models: f(x)=\sum w_ix_i

“hinge loss” is: R_reg=R_tr+\gamma ||w||^2, \gamma>0

Bayesian Model Selection

decompose prior P(α,θ) into

• parameter prior P(α|θ)

• “hyper-prior” P(θ)
P(α|θ,D)

Models

P(θ|D)

8

given these parameters

make predictions according to an integral over the class of models

weighted by the likelihood of the parameters given the data

MAP Learning

• maximize evidence w.r.t the hyper-parameters

• maximize the posterior w.r.t the parameters

θ
∗ = argmaxθ P (D|θ) = argmaxθ

∑

α

P (D|α,θ)P (α|θ)

α
∗ = argmax

α
P (α|θ, D) = argmax

α
P (D|α,θ)P (α|θ)

9

all familiar w/this

what’s important is that there are two levels of maximization

one w.r.t. \theta and then another, given \theta, w.r.t \alpha

Frequentist Model Selection

• adjust complexity to minimize risk of over-
fitting or under-fitting

• ordering of models’ expected error

RtrainingModels Rvalidation

10

performance prediction: estimate the generalization error R[f]

select models based on predicted performance, we want a monotonic function r, such that r
[f_1]<r[f_2]=>R[f_1]<R[f_2]

frequentists often train parameters on one part of data set, training examples

and train hyper-parameters on another part, validation examples

Multi-level Inference

• hierarchy of optimization problems

• each level infers a set of (hyper-)parameters

Models f∗ f∗∗

f(x;α,θ)

11

consider a model class f, we want to optimize f according to f* and optimize f* according to
f**

can view both frequentist and Bayesian learning as solving multi-level inference problems

Multi-level Inference
Frequentist

• we determine our hyper-parameters:

• then determine our parameters:

f∗∗ = argminθR2[f
∗, D]

f∗ = argmin
α
R1[f,D]

12

in frequentist models, given risk functionals R_1 and R_2, we solve the optimization
problems f** and f*

Bayesian models are similarly expressed, but with integrals of the models and priors

Multi-level Inference

Definition: a multi-level inference problem is a
learning problem organized into a hierarchy
of learning problems

13

formalize by expressing the optimization problems, f*s, as the result of a training procedure

Multi-level Inference

• learning machines A with model space B of
functions with parameters θ

• consider B as a learning machine in model space F
of functions with variable α and fixed θ

f∗ = train(B[F , R1], D)

f∗∗ = train(A[B, R2], D)

f(x;θ)

f(x;α,θ)

14

think of train as a method, process data according to some training algorithm

R is an evaluation function

solution f** belongs to the convex closure of B

solution f* belongs to the convex closure of F

we may use different subsets of D at different levels of inference

Extensions

• more than two levels of inference

• ensemble methods

Models f∗ f∗∗ f∗···∗

15

we can have an arbitrarily deep hierarchy. when would that be useful?

ensemble, have “train” return a linear combination of models

Inference Modules

Filter methods

• narrow without training

Wrapper methods

• invariant search

Embedded methods

• specific search
Model Space

Filter Methods

Wrapper Methods

Embedded Methods

Wrapper Methods

f∗

f∗∗

Embedded Methods

Parameter Space

16

Filters at the highest level of inference, ex. preprocessing

Wrappers and Embedded optimize hyper-parameters

Wrappers treat learning machines as a black-box,assess performance with an evaluation
function, ex. cross-validation

Embedded use knowledge of learning machine to search, jointly optimize parameters and
hyper-parameters, ex. -log likelihood

Review some recently proposed methods implementing these modules

Filters
i) preprocessing and feature construction

• PCA, clustering

ii) designing regularizers or priors

• methods structuring parameter space

iii) noise modeling

• loss function embeds prior for noise

iv) feature selection

• reduce dimensions of feature space

17

goal of finding a good data representation, important and hard to automate: domain
dependent

priors embed domain knowledge of model class, generally just enforce Occam’s Razor

squared loss assumes Guassian noise, distorting training data adds noise

decrease computational costs, often pruning used

Wrappers

• no required knowledge of learning
machines/algorithm

• search strategy to explore hyper-parameter
space

18

select a classifier from a set of learning machines

search strategy decides which hyper-parameters considered in which order

regularization guards against over-fitting

Wrappers

• evaluation function to test performance

• select best machine or create ensemble

19

Bayesians usually use marginal likelihood “evidence”

Frequentists usually use cross-validation

Embedded Methods

• exploit specific features of learning
machines/algorithm to search parameters

• Bayesians: compute posterior for
parameters and hyper-parameters

• Frequentists: regularized functionals, include
the empirical risk and a regularizer

20

like using gradient descent to find the optimum of a differentiable function

Bayes, hard in practice, often variational methods, which optimize parameters of simpler
version of problem

Freq: or negative log likelihood and or a prior, often use wrapper for hyper-parameters

Advances

• Ensemble methods

• Random Forests

• Heterogenous learners

21

perform model selection by voting among models

RF subsamples both training examples and features to build learners

combining different types of learning machines successful in competitions

PAC-Bayes

• priors structure
hypothesis space

Concept Space

Hypothesis
Space

Data

Learner Models

PAC Bounds

22

no assumption model comes from concept space that generated the data

can use regularization at PAC-bounds step

Open Problems

• incorporating domain knowledge

• unsupervised learning

23

automatically incorporating domain knowledge hard.

incorporating filter and wrapper methods into machine learning toolboxes can help

how do you validate model selection wrt unsupervised learning?

principled selection in unsupervised learning?

Open Problems

• semi-supervised learning

• what unlabeled data do we use?

CHAPELLE, SINDHWANI AND KEERTHI

Figure 1: Two moons. There are 2 labeled points (the triangle and the cross) and 100 unlabeled
points. The global optimum of S3VM correctly identifies the decision boundary (black
line).

points in a data cluster have similar labels (Seeger, 2006; Chapelle and Zien, 2005). Figure 1 illus-
trates a low-density decision surface implementing the cluster assumption on a toy two-dimensional
data set. This idea was first introduced by Vapnik and Sterin (1977) under the name Transduc-
tive SVM, but since it learns an inductive rule defined over the entire input space, we refer to this
approach as Semi-Supervised SVM (S3VM).

Since its first implementation by Joachims (1999), a wide spectrum of techniques have been
applied to solve the non-convex optimization problem associated with S3VMs, for example, local
combinatorial search (Joachims, 1999), gradient descent (Chapelle and Zien, 2005), continuation
techniques (Chapelle et al., 2006a), convex-concave procedures (Fung and Mangasarian, 2001;
Collobert et al., 2006), semi-definite programming (Bie and Cristianini, 2006; Xu et al., 2004),
non-differentiable methods (Astorino and Fuduli, 2007), deterministic annealing (Sindhwani et al.,
2006), and branch-and-bound algorithms (Bennett and Demiriz, 1998; Chapelle et al., 2006c).

While non-convexity is partly responsible for this diversity of methods, it is also a departure
from one of the nicest aspects of SVMs. Table 1 benchmarks the empirical performance of various
S3VM implementations against the globally optimal solution obtained by a Branch-and-Bound al-
gorithm. These empirical observations strengthen the conjecture that the performance variability of
S3VM implementations is closely tied to their susceptibility to sub-optimal local minima. Together
with several subtle implementation differences, this makes it challenging to cross-compare different
S3VM algorithms.

The aim of this paper is to provide a review of optimization techniques for semi-supervised
SVMs and to bring different implementations, and various aspects of their empirical performance,
under a common experimental setting.

In Section 2 we discuss the general formulation of S3VMs. In Sections 3 and 4 we provide
an overview of various methods. We present a detailed empirical study in Section 5 and present a
discussion on complexity in Section 6.

204

24

Chapelle and others have success with semi-supervise support vector machines

choosing the data to use is a model selection problem

Open Problems

• non-i.i.d. data

• computational cost

25

when i.i.d. assumption fails significantly cross-validation may not work

better off selecting a model class instead of a single model

need systems that incorporate multiple objectives, accuracy and lower computation cost

applications to online learning

References

• Random Forests

• http://www.stat.berkeley.edu/~breiman/RandomForests/

• S3VM

• http://olivier.chapelle.cc/research.html

26

http://www.stat.berkeley.edu/~breiman/RandomForests/
http://www.stat.berkeley.edu/~breiman/RandomForests/
http://olivier.chapelle.cc/research.html
http://olivier.chapelle.cc/research.html

