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Discussion of approaches to model selection
especially with reference to the problem of over-fitting

and the similarities between approaches
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learning as
model selection

® fitting parameters to some training data

® selecting the\best model

‘ Mapping

Observations

Inductive Bias

All Models Universe

implicitly assumes, learning is the same as model selection, is it?
can you learn without making models? without choosing models?
If we choose a ‘better’ model have we done a ‘better’ job learning?

ex: cross-validation, optimizing cost/loss functions



can't we just average!
or minimize risk!?

® your still doing model selection

All Models
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most model selection methods still have a hyper-parameter that’s optimized through cross-
validation

so, even in the principled Bayesian method of averaging over posteriors, or minimizing
performance bounds, we use cross-validation



can't we just average!
or minimize risk!?

® probably rely on cross validation somewhere

there’s no principled way to do cross-validation, e.g. choosing how to divide problem, how to
allocate data to divisions



treat hyper-parameters
as parameters?

® joint optimization is a non-convex problem

® joint optimization has infinite complexity
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considering the class of kernel methods
non-convex lose unique solution guarantee

with hyper-parameters we can bound capacity, yet still search in a class of universal
approximators

potentially alleviate over-fitting



we can structure
parameter space

® hyper-parameters lets us monitor bias/
variance tradeoff

® a regularizer enforces lower complexity

we can bound over-fitting with hyper-parameters

popular regularizers “weight decay” in NN, Gaussian processes, ridge regression, “hinge loss”
optimize hyper-parameter for reqgularizer at 2nd level of inference
considering linear models: f(x)=\sum w_ix_i

“hinge loss” is: R_reg=R_tr+\gamma ||w||[A2, \gamma>0



Bayesian Model Selection

decompose prior P(,0) into

® parameter prior P(c¢|0)

® “hyper-prior” P(0)

P(O|D)

given these parameters
make predictions according to an integral over the class of models

weighted by the likelihood of the parameters given the data



MAP Learning

® maximize evidence w.r.t the hyper-parameters

0" = argmaxy P(D|0) = argmax, Z P(D|a,0)P(x|0)

® maximize the posterior w.r.t the parameters

o = argmax, P(a|0,D) = argmax_, P(D|a, 0)P(|0)

all familiar w/this
what’s important is that there are two levels of maximization

one w.r.t. \theta and then another, given \theta, w.r.t \alpha



Frequentist Model Selection

® adjust complexity to minimize risk of over-
fitting or under-fitting

® ordering of models’ expected error

Rtraining |< R, alidation |
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performance prediction: estimate the generalization error RIf]

select models based on predicted performance, we want a monotonic function r, such that r
[f 1]<r[f_2]=>R[f_1]<R[f 2]

frequentists often train parameters on one part of data set, training examples

and train hyper-parameters on another part, validation examples



Multi-level Inference

® hierarchy of optimization problems

® cach level infers a set of (hyper-)parameters

f(x;a, 0)

ok P
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consider a model class f, we want to optimize f according to f* and optimize f* according to
f7‘<7‘<

can view both frequentist and Bayesian learning as solving multi-level inference problems



Multi-level Inference
Frequentist

® we determine our hyper-parameters:

f** = argming Ro[f™, D]

® then determine our parameters:
f* = argmin_ R, [f, D]
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in frequentist models, given risk functionals R_1 and R_2, we solve the optimization
problems f** and f*

Bayesian models are similarly expressed, but with integrals of the models and priors



Multi-level Inference

Definition: a multi-level inference problem is a
learning problem organized into a hierarchy
of learning problems
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formalize by expressing the optimization problems, f*s, as the result of a training procedure



Multi-level Inference

® |earning machines A with model space B of
functions f(x; @) with parameters 0

[ = train(A|B, Rz|, D)

® consider B as a learning machine in model space F
of functions f(x; «, @) with variable & and fixed 0

f* = train(B[F, Ry], D)

think of train as a method, process data according to some training algorithm

R is an evaluation function
solution f** belongs to the convex closure of B
solution f* belongs to the convex closure of F

we may use different subsets of D at different levels of inference

14



Extensions

® more than two levels of inference

® ensemble methods
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we can have an arbitrarily deep hierarchy. when would that be useful?

ensemble, have “train” return a linear combination of models
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Inference Modules

Filter Methods

Filter methods

Wrapper Methods

® narrow without training

Wrapper methods Embedded Nethods

Embedded Methods

® invariant search

Embedded methods

Wrapper Methods

= Model Space

® specific search

Parameter Space
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Filters at the highest level of inference, ex. preprocessing

Wrappers and Embedded optimize hyper-parameters

Wrappers treat learning machines as a black-box,assess performance with an evaluation
function, ex. cross-validation

Embedded use knowledge of learning machine to search, jointly optimize parameters and
hyper-parameters, ex. -log likelihood

Review some recently proposed methods implementing these modules



Filters

i) preprocessing and feature construction
® PCA, clustering
ii) designing regularizers or priors
® methods structuring parameter space
iii) noise modeling
® |oss function embeds prior for noise
iv) feature selection

® reduce dimensions of feature space

goal of finding a good data representation, important and hard to automate: domain
dependent

priors embed domain knowledge of model class, generally just enforce Occam’s Razor
squared loss assumes Guassian noise, distorting training data adds noise

decrease computational costs, often pruning used
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VWrappers

® no required knowledge of learning
machines/algorithm

® search strategy to explore hyper-parameter
space

select a classifier from a set of learning machines
search strategy decides which hyper-parameters considered in which order

regularization guards against over-fitting
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VWrappers

® evaluation function to test performance

® select best machine or create ensemble

Bayesians usually use marginal likelihood “evidence”

Frequentists usually use cross-validation
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Embedded Methods

® exploit specific features of learning
machines/algorithm to search parameters

® Bayesians: compute posterior for
parameters and hyper-parameters

® Frequentists: regularized functionals, include
the empirical risk and a regularizer
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like using gradient descent to find the optimum of a differentiable function

Bayes, hard in practice, often variational methods, which optimize parameters of simpler
version of problem

Freq: or negative log likelihood and or a prior, often use wrapper for hyper-parameters



Advances

® Ensemble methods
® Random Forests

® Heterogenous learners

perform model selection by voting among models
RF subsamples both training examples and features to build learners

combining different types of learning machines successful in competitions
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PAC-Bayes

Concept Space

® priors structure
hypothesis space

PAC Bounds
v
Hypothesis Learner |

Space

no assumption model comes from concept space that generated the data

can use regularization at PAC-bounds step



Open Problems

® incorporating domain knowledge

® unsupervised learning

automatically incorporating domain knowledge hard.
incorporating filter and wrapper methods into machine learning toolboxes can help
how do you validate model selection wrt unsupervised learning?

principled selection in unsupervised learning?
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Open Problems

® semi-supervised learning
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® what unlabeled data do we use?

Chapelle and others have success with semi-supervise support vector machines

choosing the data to use is a model selection problem
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Open Problems

® non-i.i.d. data

® computational cost

when i.i.d. assumption fails significantly cross-validation may not work

better off selecting a model class instead of a single model

need systems that incorporate multiple objectives, accuracy and lower computation cost

applications to online learning

25



References

® Random Forests
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