
 1 

Multitarus: Agent Communication Framework 
 

P.B. Lubell-Doughtie1 
Stanford University 

 
May 19, 2005 

 
 

Abstract 
A multi-agent problem is described in which communication 

among the agents proves to be essential to its efficient solution.  Genetic 
(Evolutionary) Programming is used to evolve agents that can solve the 
problem by communicating amongst each other. 
 
 

I. Introduction 
 

In this paper I ask the question: does the evolution of communication among 
agents lead to enhanced performances? In addition, if it does lead to enhanced 
performance, under what circumstances is this so? Enhanced performance includes 
solving the problem faster, solving the problem more efficiently, or both. 

I also wish to determine whether or not communication will evolve naturally in a 
simulated world when there is an incentive for it to develop.  The basic framework for the 
possibility of communication is provided, and within this framework agents are allowed 
to evolve their abilities for goal achieving actions aided by communication. 
 

The approach used is to extend Astro Teller’s Tartarus program (Teller) to allow 
for communication.  I compare the results seen from those agents that can communicate 
and those agents that cannot communicate.  In Teller’s program, a single robot moves up, 
down, left, and right in  a two dimensional grid-world environment.  The robot can sense 
in all eight directions N, NE, …, NW.  Its objective is to push as many boxes (which are 
randomly placed in the environment at the beginning of the game) as possible to the outer 
edges of the grid environment.  The game runs for a fixed number of moves and once 
completed the likelihood of the agent moving on to the next generation of individuals and 
playing the game once more (its fitness) is increased by one point for boxes on the outer 
edge of the grid and two points for boxes in a corner of the grid. 
 
II. The Experimental Setup 
 
A. Acting and Sensing 
 

In Multitarus, the extension of Teller’s Tartarus program, the domain is specified 
by a set of parameters which are set at the beginning of a run of the game. The domain 
                                                
1 Thanks to Nils Nilsson and John Koza for their continuing help with these ideas 



 2 

parameters that can be specified include the width of the grid, the height of the grid, the 
maximum number of moves an agent can make (the number of time steps per game), the 
number of boxes in the grid world, and the number of agents in the grid world.  Each 
square within the grid may be empty, contain a box, or contain any number of agents. 

The agent can be thought of abstractly as a set of sensors and effectors.  
Alternatively, the agent may be thought of more concretely as a robot with limited motion 
capabilities operating within an artificial environment.  The agent is able to move in the 
same ways in which an agent in Tartarus can move (Up, Down, Left, Right).  If an agent 
comes to a wall and moves in the direction of the wall, a time step is taken but the agent 
does not move and no effect is seen on the environment. 

When an agent encounters a box in grid world the agent is able to push the box 
only if two conditions are satisfied.  (1) There is another agent within a certain distance 
(this distance may be infinity to negate this requirement) and (2) the grid square beyond 
the box in the direction it is being pushed is empty.  If the agent is unable to push the box 
a time step is taken and the agent and box remain in their previous positions.  If the agent 
is able to push the box then both the agent and the box move one step in the direction the 
box was pushed. 

The agent is able to sense what exists in the eight grid squares that surround it. 
 
 

 
 

Figure 1: A grid section with sensing areas labeled 
 

A section of the whole grid is displayed above.  The cells labeled N through NW, 
proceeding clockwise, correspond to grid cells that the agent (labeled by AGENT) can 
sense.  The input to the agent in the cells is determined by what is in the cell. 
 
B. Memory and Communication 
 

Each agent in the environment has its own array-based memory structure which is 
set at a size of n cells.  The environment allows for several different types of 
communication.  Because the memory involved in the program is compartmentalized in 
various separate areas, communication can take place (1) between separate agents 
through their direct alteration of each others’ memory, (2) between separate agents 
through alteration of an external (to the agents memory) data cell, and (3) within a single 
agent (see figure below). 

 

NW   N   NE 
 
 

 W    AGENT E 
 
 

SW   S   SE 



 3 

 
Figure 2: Three types of agent communication 

 
As can be seen above these three types of communication are fundamentally different.  
Type (1) is the most direct and is analogous to the form of communication we employ in 
direct face to face communication. For a type of communication analogous to type (2) we 
may consider one individual writing something in a book or posting something on a 
message board and another person reading it. Type (3) can be equated with thought 
where one changes ones own memory structure. 

 
Two classes of functions are involved in communication.  There are the intra-

agent read and write functions and the inter-agent read and write functions.  First the 
intra-agent functions will be described and then the inter-agent functions will be 
described in a way that builds upon the intra-agent function descriptions. 

What occurs during a typical read from memory is that the number provided as an 
argument, which is an integer, assigns the value in that numbered space in the agent’s 
memory to the agent’s acting memory retrieval position.  The memory retrieval position 
is the space labeled DATA in Figure 2.  It is an extra position in memory set up to hold 
values that are going to be referenced later, are frequently referenced, or are shared 
between agents. 

When an agent uses the write function the process is slightly more complicated. 
The first argument which is taken specifies the space in the agent’s memory to write into.  
The second argument which is taken is the data value to be written into the memory 
location specified by the first argument.  The space in the agent’s memory is written into 
and the agent’s memory retrieval position is replaced with the value which was in the 
agent’s memory at the location specified by the first argument before it was overwritten 
with the data value supplied by the second argument. This is done primarily because 
Teller’s Tartarus program operated in this fashion. Programmatically it operates as a way 
to keep the agents knowledge in circulation; the memory is flushed back into the system. 

To demonstrate a write function suppose n = 5, the memory retrieval position is 
set to [5], agents 1’s memory is [0,1,2,3,4] and the function call Write([4], [2]) is 
executed. [4] is the space in the agents memory to write into and [2] is the value to be 
written. After the function call the memory retrieval space is now [4] because this is the 
value in space [4] (where array index is done from 0 to n – 1). The agent’s memory is 
now [0,1,2,3,2]. 

The communication functions operate very similarly to the read and write 
functions.  The read from agent function (ReadAgent) takes two arguments.  The first 
argument specifies which agent data will be read from.  The second argument specifies 
which memory cell in that agent will be read. The read memory goes from the other 
agent’s memory cell into the memory retrieval cell of the reading agent. 

The write agent function (WriteAgent) takes three arguments. The first argument 
is which agent data is going to be written into.  The second argument specifies where that 

A1        0     1    2    3               …n-1    

                           (1) Inter-agent                                                                                         DATA 

              Communication type 1  

 

A2        0     1    2    3               … n-1 
                                                                         (2) Inter-agent 
                                         (3) Intra-agent communication   Communication type 2 



 4 

data will be written in the agent’s memory and the third argument contains the actual data 
to be written.  The data that was previously in the cell to be written into is placed in the 
memory retrieval cell. 
 
C. Genetic Programming  
 

To answer the questions posed in the introduction, namely to evaluate the 
effectiveness of communication and to see if it develops naturally, a method of 
evolutionary computing called genetic program was used.  This method involves the 
evolution of simple programs through program branch recombination, reproduction, and 
mutation (see Koza 1992). Below the genetic program tableau for this analysis is 
presented and explained: 

 
Objective: Evolve a program which is capable of 

pushing as many boxes as possible to the 
outside of a two dimensional environment 
(version. 1) allowing agents to push boxes 
when in contact with them (version 2) 
allowing agents to push boxes only when 
another agent is within a radius of a certain 
number of squares. 

Terminal Set: Ephemeral Random Constant, LowerLeft, 
LowerMiddle, LowerRight, MiddleLeft, 
MiddleRight, UpperLeft, UpperMiddle, 
UpperRight 

General Function set: Add, Equal, IfThenElse, Less, Max, Not, Sub 
Communication Function set: Read, Write, ReadAgent, WriteAgent 

Testing Function set: Transport 
Fitness cases: Position in the environment of each box. A 

box in a corner earns two points and a box 
on the edge of the environment earns one 
point. The box in the corner earns two points 
because it is earns one point for each wall it 
is against. 

Raw Fitness: The maximum possible fitness of the 
individual being tested minus the fitness of 
that individual. 

Adjusted Fitness: The raw fitness adjusted to a scale from 0 to 
1. 

Hits: One hit is scored for each box on the outside 
walls, two hits for each box in a corner. 

Wrapper: {0 < MoveForward < 6} {7 < TurnLeft  < 
13} {14 < TurnRight < 19} 

Parameters: Individuals in population M = 1024, Number 
of generations run G1 = 101 G2 = 51, Elitism 
is used with a pool size of E = 10. 

Result Designation: The best individual so far is designated as 
the result. 

Success Predicate: An individual will be deemed successful 



 5 

when it has the maximum number of hits or 
is the individual which scores closest to the 
maximum number of hits. 

Table 1: Genetic Programming Tableau 
 

        The terminals used in the program are equivalent to those described above in figure 
1. Each terminal holds in it the value set at location described by the terminal. 

 

 
Figure 3: Sample grid portion; terminal description 

 
In figure 3 above the terminal MiddleRight would be 1 indicating that there 
is a box in that location. The terminal LowerRight would be 4 indicating that agent A2 
(or agent n – 2, where n is the value on the map) is in that location. The remainder of the 
terminals would be 0 indicating that nothing is in that location. If we consider a situation 
where an agent is on the edge of the grid the squares outside the grid are coded 2. The 
way in which the general functions work is the same as the way they work in Astro 
Teller’s Tartarus. 
 The general functions work as follows. Add takes two arguments and returns the 
value of those arguments under addition with an upper limit equal to the number of 
memory cells minus 1. This is done so that if this value is referenced by a Read, Write, 
ReadAgent, or WriteAgent function no out of bounds errors will occur. Equal returns 1 if 
the two arguments supplied to it are to equal to each other and 0 otherwise. The 
IfThenElse takes three arguments. The syntax is If argument one greater than 0 Then 
argument two Else argument three. The Less function returns 1 if the first argument is 
less then the second and 0 otherwise. The Max function works by returning the first 
argument if it is greater than the second and doing nothing otherwise. The Not function 
operates by return 1 if the single argument it takes is 0 and returning 0 otherwise. The 
Sub function returns the result of two arguments under subtraction with a strict lower 
bound of 0; this is again for memory indexing. 
 The communication functions have been described above and work in the 
implementation as described above. The transport function is included for testing 
purposes only. It was designed to make the problem more tractable in a shorter time 
period so that parameter and ADF inclusion effectiveness could be evaluated. It works by 
changing the location of the agent to the location of the other agent in the environment 
when it is called. 

The wrapper describes how movement in the environment takes place. If the 
result of the evaluation of the program is a number between 0 and 6 the agent moves 
forward, if the number is between 7 and 13 the agent turns left, and if the number is 
between 14 and 19 the agent turns right. 
       A portion of the runs conducted using the above tableau involved 
automatically defined functions or ADFs (see Koza 1992). ADFs are a way for genetic 
programming to create useful subroutines.  In the runs in which ADFs were used there is 

A1         
 

                                       A2 

From A1’s perspective: 
UpperRight  = 0 
MiddleRight = 1 
LowerRight  = 4 



 6 

one main program branch which is able to call the two ADFs. The first ADF is not able to 
call any 
functions and it does not take any arguments.  The second ADF takes one argument and 
is able to call the first ADF. 
 

 
Figure 4: ADF interactions 

 
        In all runs tournament selection and elitism are used.  Tournament selection 
is a process which maximizes the diversity in the next generation’s population while at 
the same time gathering fit individuals for movement into the next generation.  In 
tournament selection a group of a certain size, usually 7, is chosen at random and 
then the individual with the highest fitness value is chosen for reproduction (movement 
into the next generation without change to its program structure).  The group or pool size 
used for tournament selection in all experiments run was 10. This value was seen to work 
more effectively then 7.  Elitism means that the program is run using breeding policies 
that try to preserve the best individuals in the population. 
        The program was run within the ECJ 11 Evolutionary Computation and Genetic 
Programming Research System. 2 This is a strongly-typed system. This means that the 
programs created within it are typed and contain multiple different types. In this system 
the pipelines used for input into a new population were set as follows: crossover 85%, 
reproduction 10%, and mutation 5%. These numbers were found to be appropriate after 
experimentation with various settings (specifically, settings without mutation). The ECJ 
11 system uses the Mersenne Twister Fast algorithm3 to generate random numbers, 
settings, and parameters. This is the randomization algorithm used throughout. 

In the grid environment the size is set at 6 wide by 6 high, 6 boxes are randomly 
placed, n = 20 memory cells are used per agent, there are N = 2 agents, and the number of 
time steps used per run per agent is set at 2000. During a time step the following program 
segments run once for each agent in the order in which they are presented below: (1) The 
environment is updated (2) Agent N’s program is run. After all agents have had their turn 
a complete cycle in the environment has taken place. This complete cycle runs for each 
time step (2000 times) and this simulation runs M = 1024 times (as defined in 
parameters), once for each individual in the population. 1024 simulation runs is defined 
as one generation’s run. 
 
III. Description of Experiments 

                                                
2 This system was written by Sean Luke, Liviu Panait, Gabriel Balan, Zbigniew Skolicki, Jeff Bassett, 
Robert Hubley, and Alexander Chircop. More information is available at: 
http://cs.gmu.edu/~eclab/projects/ecj/. 
3 A description of the Mersenne Twister algorithm can be found at: http://www.math.sci.hiroshima-
u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf. 

Main Tree       ADF0 
 
 
        ADF1 



 7 

 
A. Nearness Criteria 
 
        As delineated in the program objective section of the genetic programming 
tableau two versions of the game were played.  In one version of the game for a block to 
be able to be pushed there had to be another agent within a certain radius of the agent 
doing pushing.  This version of the game has what I call the “nearness restriction.” 

In the versions of the game played with the nearness restriction there must be one 
agent pushing against the box (that is moving in the direction of the box while the square 
opposite the box is clear) and another agent must be located within a radius of one, two, 
or three (zero is also possible but this was not analyzed). If we consider Figure 5 below 
we see that if agent A1 moves to the right on its turn it will be able to push the box under 
2 and 3-nearness. Under 1 or 0-nearness (0-nearness is the requirement that the agents be 
at the same location for the box to be pushed) the box would not be pushable. 

 

 
Figure 5: Varying nearness amounts 

 
A subtlety of this implementation of communication is that within one time step 

of one run the environment may change so that what was initially a block able to be 
pushed is no longer able to be pushed. Considering figure 5 and suppose that the nearness 
restriction is set at 2-nearness. We see that before agent one’s turn has taken place agent 
two is able to push the block against the wall down. Now suppose that agent one’s turn 
evaluates to Move Forward and the agent is facing right. After agent one moves agent 
one will be out of range of agent two under 2-nearness. Agent two will not be able to 
push the block down in this situation. 

A nearness restriction is implemented in order to provide motivation for 
communication between agents. The reasoning behind this is that agents that are able to 
work together through communication will be better able to push the blocks to the outside 
of the grid. This is because those that communicate more effectively will be able to 
instruct agents to follow them around or move with them or towards them so that pushing 
blocks is possible. 

1 nearness 
 
2 nearness  
 
3 nearness 

                  A1 
 
 
 
A2 
 



 8 

The program as it is written now implements an ideal and uncommon situation in 
which what is communicated undergoes no signal loss or degradation of data integrity.  
This situation is uncommon because in nature, or any non-digital environment, there 
always exists some type of noise, which precludes perfect signal integrity.  As such we 
must recognize that comparisons between the Multitarus world and the real world will 
only be valid to within a certain approximation. 
 
B. The Experiments 
 

In order to evaluate the effectiveness of communication, experiments were run 
with varying amounts of nearness and, with communication and without.  It was expected 
that experiments with a higher amount of nearness (3 as opposed to 2 or 1) would be 
solved faster and with less use of communication or ADFs. 

In the genetic programming runs presented below the agent is tested under four 
separate sets of programming guidelines, and then the results are analyzed separately.  A 
comparison is made first looking at the effectiveness of ADFs.  Then a second 
comparison is made to look for the effectiveness of communication. 
 
 For testing the usefulness of ADFs a comparison is made between allowing 
communication without ADFs and allowing communication with ADFs. During these 
runs the nearness requirement is set at 2 to provide motivation. The best of run individual 
after 50 generations in a prohibiting-ADFs run is shown below: 
 

Evaluated: true 
Fitness: Raw=8.0 Adjusted=0.11111111 Hits=2 
Tree 0: 
 (+ (read lower-right) (max lower-right lower-middle)) 

 
This program adds the result of reading from the memory location specified by what is in 
the lower-right terminal to the greater of the values from the lower-right and 
lower-middle terminal. The resulting value is then evaluated according to the 
wrapper and the agent acts accordingly. This very simplistic program is only obtaining its 
hits because of the random setup of the board and accomplishes nothing toward the goal. 
 
The best of run individual after 50 generations, with ADFs, is shown below: 
 

Evaluated: true 
Fitness: Raw=7.0 Adjusted=0.125 Hits=3 
Tree 0: 
 (less lower-left (IF-then-else lower-left 
     transport (less [1] upper-right))) 
Tree 1: 
 (read-agent (equal [18] transport) (not transport)) 
Tree 2: 
 (+ lower-left (equal (write lower-right lower-left) 
     (less middle-right lower-right))) 

 



 9 

This agent is able to accomplish more hits than without ADFs but this appears not to be 
because of the ADFs. The important part of this program seems to be the IF-then-
else function in the main tree, Tree 0. This function uses transport if there is a box 
or a wall or an agent in the lower left corner relative to the agent’s orientation. If there is 
not a box, wall, or agent in the lower left corner relative to the agent’s orientation the 
IF-then-else branch returns 1 minus what is in the upper-right terminal. Trees 
1 and 2 (the ADFs) are never executed because, as can be seen by examining Tree 0, they 
are never called. 
 
 Now that it has been determined that, in a testing environment, programs that are 
evolved with ADFs are come closer to the solution of the problem, we can test the 
effectiveness of communication. To test communication we will compare simulations 
with ADFs and without communication to those with ADFs and with communication. 
This will be done under 3, 2, and 1-nearness. It is expected that as the nearness 
requirement becomes less the problem will become more difficult to solve and more ADF 
and communication usage will occur. 
 
IV. Experimental Results 
 
 All experiments were conducted using programs with a main tree and two ADF 
trees. The parameters are the same as stated above and displayed in the genetic 
programming tableau. The nearness varies from experiment to experiment. 
 
A. Three-Nearness 
 

The first experiment conducted used 3-nearness. A sample tree allowing 
communication and graphs comparing runs where communication is allowed and where 
it is disallowed are provided below for analysis: 

 
Evaluated: true 
Fitness: Raw=2.0 Adjusted=0.33333334 Hits=8 
Tree 0: 
 ADF0[1] 
Tree 1: 
 (write (not (less [7] [0])) (IF-then-else 
     (- [12] [7]) (write-agent (write [19] [12]) 
     (less [6] [2]) (- (less (write (write (less 
     (equal [18] [19]) (less (less [5] [16]) [15])) 
     (write [14] [5])) (not (read-agent (less 
     [5] [16]) (- [18] [18])))) (equal (IF-then-else 
     (- [6] [15]) (write-agent (read [6]) (equal 
     [10] [0]) [18]) [11]) (less (IF-then-else 
     (write [14] (write [15] [1])) (equal [1] 
     [19]) (- [12] [7])) (equal (write-agent [14] 
     [12] [10]) [7])))) [11])) (read-agent (read 
     [1]) (- [15] [0])))) 
Tree 2: 
 [19]  



 10 

  
The program above earns 8 hits. The seemingly important part of this tree is Tree 

1 because it contains the majority of the code and is executed through a call to it by the 
main tree. This ADF's main branch is a Write function that places true or 1 in the 
memory cell found by executing and making use of an IF-then-else branch. The 
first child of the IF-then-else is {12 - 7} = 2 which is greater than 0 and because of 
this the else branch of the tree is never executed and instead the then branch is 
executed. Within this then branch write-agent is called and the result of less [6] 
[2] (0) is written into the space of the evaluation of the following tree 1 code segment: 

 
(- (less (write (write (less 
(equal [18] [19]) (less (less [5] [16]) [15])) 
 (write [14] [5])) (not (read-agent (less 
 [5] [16]) (- [18] [18])))) (equal (IF-then-else 
 (- [6] [15]) (write-agent (read [6]) (equal 
 [10] [0]) [18]) [11]) (less (IF-then-else 
 (write [14] (write [15] [1])) (equal [1] 
 [19]) (- [12] [7])) (equal (write-agent [14] 
 [12] [10]) [7])))) [11]) 

 
The rest of the program contains multiple write,read,write-agent,read-
agent functions to allow for a good deal of communication between agents and within 
agents. 
 
 Below is a graph of the best individual’s number of hits with communication 
versus the best individual’s number of hits without communication and with ADFs in 
both situations over a time period of 60 generations: 
 

 



 11 

Graph 1: 3-Nearness ADF best individual hits with communication versus no communication. The red line 
indicates the maximum possible hits. 

 
The darker line, which corresponds to agents that communicate, quickly rises above the 
lighter line, corresponding to those that cannot communicate. It can be seen that as more 
generations pass those agents that are allowed to use communication score more hits than 
those that are not allowed to use communication. These agents therefore come closer to 
solving the problem at hand. 
 
B. Two-Nearness 
 
 The second experiment conducted was designed to be more difficult and used 2-
nearness. A sample tree allowing communication and graphs comparing runs where 
communication is allowed and where it is disallowed are presented below: 

 
Evaluated: true 
Fitness: Raw=3.0 Adjusted=0.25 Hits=7 
Tree 0: 
 (- (write (read-agent ADF0[1] (not (ADF1[2] 
     ADF0[1]))) (max (read (ADF1[2] middle-left)) 
     (write-agent (write (max lower-right upper-middle) 
         (ADF1[2] [12])) (max lower-middle lower-left) 
         (equal ADF0[1] upper-right)))) (less (read 
     (less (IF-then-else middle-right middle-left 
         lower-middle) (write-agent lower-middle 
middle-left 
         middle-left))) (write-agent (- (less (ADF1[2] 
     ADF0[1]) (IF-then-else (ADF1[2] ADF0[1]) 
     upper-right upper-middle)) (read-agent middle-
right 
     (ADF1[2] ADF0[1]))) (read (read (less (IF-then-
else 
     middle-right middle-left lower-middle) (write-
agent 
     lower-middle middle-left middle-left)))) 
     (+ [2] upper-middle)))) 
Tree 1: 
 (not (IF-then-else (read-agent (- [11] [19]) 
     (- (equal [1] (not [19])) (read-agent (- 
         [11] [19]) (- (equal [1] [19]) (write-agent 
         (less [19] (IF-then-else (read-agent (- [11] 
             [19]) (- (equal [1] (- [11] [19])) (read 
             [4]))) (read-agent (- (read-agent [2] [5]) 
             (IF-then-else [4] [16] [18])) (- [11] 
[19])) 
             (IF-then-else (read-agent (- [11] [19]) 
(- equal [1] (less [19] [15])) (read [4]))) 
                 (read-agent (- (read-agent [2] [5]) 
(write-agent (write [14] [3]) (read-agent (read [4]) 
(write [1] [8])) (write [15] [1]))) (read-agent 



 12 

                     (read-agent [9] (equal [12] [10])) 
(- (read-agent [16] [1]) (equal [17] [6])))) (not (not 
(write-agent (less [19] [15]) (write [16] [5]) (- 
(read [7]) [19]))))))) (write [16] [5]) (less [9] 
         [7])))))) (read-agent (- (read-agent (- 
(read-agent [2] [5]) [13]) (not (write-agent (less (- 
     [11] [19]) [15]) (write [16] [5]) (- (read 
     [4]) [19])))) (IF-then-else [4] [16] [18])) 
     (read-agent [16] [1])) (not (not (write-agent 
     (less (- [11] [19]) [15]) (write [16] [5]) 
     (- [11] [19])))))) 
Tree 2: 
 (+ (+ upper-middle upper-middle) upper-middle) 
 

 The program above earns 7 hits.  Tree 0 and Tree 1 of the above program make 
ample use of the read, write, read-agent, and write-agent functions. It is 
likely that it is because of this usage that the program is able to score the number of hits it 
did. 
 
 Below is a graph of the best individual’s number of hits with communication 
versus without communication and with ADFs in both situations over a time period of 60 
generations: 
 

  
Graph 2: 2-Nearness ADF best individual hits with communication versus no communication. The red line 

indicates the maximum possible hits. 
 
The darker line, which corresponds to agents that are allowed to communicate, rises 
above the lighter line (corresponding to agents that cannot communicate).  Once above 
the line it stays above. The agents who were able to communicate therefore come closer 
to solving the problem at hand. 



 13 

 
C. One-Nearness 
 
 The third experiment conducted was the most difficult; more difficult than 3 and 
2-nearness, it used 1-nearness. A sample tree allowing communication and graphs 
comparing runs where communication is allowed and where it is disallowed are presented 
below: 
 

Evaluated: true 
Fitness: Raw=6.0 Adjusted=0.14285715 Hits=4 
Tree 0: 
 (write-agent (+ (ADF1[2] middle-right) (not 
     (less lower-left middle-left))) lower-left 
     (- (not middle-right) (read-agent (read-agent 
         ADF0[1] middle-left) lower-right))) 
Tree 1: 
 (equal [2] (write-agent [4] (write-agent 
     (write-agent (- (IF-then-else (write-agent 
         (- [17] [0]) (- (not [2]) (read [19])) (IF-
then-else 
         (read [9]) (IF-then-else (not (- (- [17] 
         (write [10] [13])) (read [19]))) (equal 
(write [6] [3]) (IF-then-else [11] [15] [0])) (write-
agent 
         (not [3]) (read-agent [18] [2]) [0])) [13])) 
         (less [15] [3]) (write-agent [14] [10] [5])) 
         (not [5])) (- (not [5]) (read [19])) [13]) 
     (not (- (write [10] [13]) (- [13] (read [19])))) 
     [3]) (IF-then-else (not [5]) (equal (write 
     [6] [3]) (IF-then-else [11] [15] [0])) (write-
agent 
     (not [3]) (- [17] [0]) [0])))) 
Tree 2: 
 upper-right 
 
The program above earns 4 hits. Tree 0 and Tree 1 of the above program use 

intertwined communication function calls with references to the grid environment. It is 
likely that because of this the program is able to score as many hits as it does considering 
the difficulty of the problem presented. The best individual for the population was 
eventually (see graph below) able to earn 6 hits. 

 
Below is a graph of the best individual’s number of hits with communication 

versus without communication and with ADFs in both situations over a time period of 60 
generations: 
 



 14 

1 Near Best ADF Individual Hits Communication vs. No Communication

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Generation

B
es

t H
its

1 near Communication 1 near No Communication   
Graph 3: 1-Nearness ADF best individual hits communication versus no communication. Maximum 

possible hits (8) not on graph. 
 

The darker line, which signifies agents that are allowed to communicate, rises above and 
then once above the lighter line (signifying agents that cannot communicate) stays above. 
The agents who were able to communicate therefore come closer to solving the problem 
at hand.  In this case it can be seen that those agents that communicated did significantly 
better than those that did not. 
 
V. Conclusions 
 
 We have seen, that in this multi-agent implementation of the simple Tartarus grid-
world environment (provided by Astro Teller), agents that have the ability to 
communicate with other agents perform better. These agents have a significant advantage 
that allows them to solve the problem, or approach a solution to the problem, whereas 
agents without communication capabilities cannot solve the problem or do not come as 
close to solving the problem. In addition, agents with communication capabilities came 
closer to solving the problem, or solved the problem, in a fewer number of time-steps 
than those without communication capabilities. 
 We can create three classes for multi-agent problems: 
 

1. Those for which communication hinders finding a solution. 
2. Those for which communication is irrelevant to finding a solution. 
3. Those for which communication helps to find a solution. 

 
The experimental results seen in this research appear to belong to class 3. It seems 
anomalous that as the difficulty of the problem increases, that is as the nearness 
requirement decreases from three to two, communication is not more effective. We see 



 15 

that in 2-nearness communication appears less effective than in 3-nearness. Under 2-
nearness the problem presented is neither too difficult for communication to solve the 
problem nor too simple for communication to hinder the finding of a solution. There exist 
situations in which communication may hinder the finding of a solution by extraneous 
functions. Similarly the problem of neither being too difficult nor too simple is present in 
3-nearness. A middle ground exists in problem difficulty where communication simply 
becomes less important; these are the problems that belong to class 2 above. 
  With that said, there exist some multi-agent problems for which communication 
between agents results in finding a solution much faster and efficiently than if the agents 
are not allowed communication. This can be seen above in graph 3. This graph clearly 
shows the effectiveness of communication in the sharp rise in number of hits received by 
agents with communication versus those without communication when 1-nearness is used. 
 
 We would expect that if the problems where to get easier communication would 
be less important. This is because the problem as a whole would be easier to solve. The 
subcomponent of the problem of attracting agents to an agent trying to push a block 
would have a larger probability of being solved by chance. 
 In addition, we would suspect that making the problem harder would make the 
ability to communicate even  more important. In this situation the problem would be 
harder and take longer to solve. Considering the harder 0-nearness problem in which a 
block can only be pushed when there are two agents at the same location, communication 
between agents would be useful. This is because communicating to an agent to direct 
them onto the spot the pushing agent is on would make the problem easier. 
 
VI. Future Work 
 
 A possible alteration of the Mulitarus system developed is to change the objective 
of the game so that, instead of pushing boxes to the outer portion of the environment, the 
agents gather items in the environment which can either affect them positively or 
negatively. Whether the items are positive or negative would depend on various 
characteristics of the item, such as its appearance. This would engender communication 
because as the agents gathered items they would learn which are positive and which are 
negative. This information could then be transmitted to other agents so that all the agents 
would quickly learn to stay away from the negative and head towards the positive. This 
simulation would be particularly instructive because it seems reasonable that it may be 
similar to the way in which language and communication developed in the natural world. 
 A possible extension of the already developed Multitarus system is to run it with 
altered parameters. Specifically, the number of boxes in the environment, the size of the 
environment, and the number of agents in the environment could be increased. This 
would allow for effective use of communication because there would be more space for 
agents to be outside of the nearness requirement. 



 16 

References 
 
Koza, J., Genetic Programming, MIT Press, Cambridge-U.S.A., 1992. 
 
Koza, J., Genetic Programming II, MIT Press?, Cambridge-U.S.A.?, 199X?. 
 
Langdon, W., Qureshi, A., Genetic Programming - Computers using “Natural Selection” 
to generate programs, University College London, 
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/surveyRN76.pdf 
 
Norvig, P., Russel, S., Artificial Intelligence, Pearson Education, 
Upper Saddle River-U.S.A., 2nd edition, 2003 
 
Teller, Astro, “Learning Mental Models”, Carnegie Mellon University 
 
Werner, G., Dyer, M., “Evolution of Communication in Artificial Organisms”, Artificial 
Life II, 659, Addison-Wesley Publishing Company, 1992 


