Multiagent Systems 2010
(Multiagent) Reinforcement Learning

Peter Lubell-Doughtie, 6095445 and Davide Modolo, 6209033

University of Amsterdam

1 Introduction

In this assignment we address the problem of how autonomous agents that sense
and act in their environment can learn to choose optimal actions to achieve
their goals. We will use the Q-learning algorithm, which learns optimal control
strategies from delayed rewards, even when agents have no prior knowledge of the
effects of their actions on the environment. We will experiment with two different
strategies for choosing actions, an e-greedy strategy that randomly chooses ac-
tions and an e-greedy strategy that chooses actions weighted by their estimated
value.

The environment consists of a grid world in which two types of agents, two
predators and one prey, move around. In this world the goal of the predators is
to capture the prey as quickly as possible. In the first exercise the task is for each
predator to learn an individual policy for capturing the prey. In this exercise and
prey is captured when it is surrounded by two predators, therefore although the
predators develop individual policies they must coordinate their actions.

In the second exercise the task is for both predators to learn a joint policy
for capturing the prey. In this exercise a prey is captured when it is surrounded
by the predators for two time steps. This is a harder problem and we expect it
to take a greater number of moves for the predators to capture the prey.

In the next section, we describe the implementation details for both of these
learning policies, and we explore a way to represent the state space such that
we can use Q-learning on larger state spaces more efficiently. In Section 3, we
describe our experiments, and in Section 4 we present and discuss the results.
Finally, in Section 5, we conclude.

2 Implementation Details

We implement an algorithm in which the predators attempt to learn an optimal
policy for capturing prey by using a temporal difference learning method called
Q-learning. The pseudo-code of our implementation for the Q-learning algorithm
applied to this problem is presented in Algorithm 1. Below we will present pre-
liminaries and provide a detailed description of the different components of the
algorithm.

The first step in both the individual and joint policies is for each predator
to determine a unique fixed label for itself and the other predator. This is done

2 Peter Lubell-Doughtie and Davide Modolo

by assigning an ID of 1 to the predator that is to the East or, if both predators
are on the same longitude, to the predator that is to the North, and an ID of 2
to the other predator. Below we will refer to an arbitrary predator as pred; and
to the predators with ID 1 and 2 as pred; and preds respectively. We note that
any scheme assigning deterministic IDs can be used.

2.1 Moves

Given an arbitrary location on the grid, a predator can either move in one of the
four cardinal directions or remain in the same location. We denote these moves

as {mq,ma, m3, my, ms} where each m; respectively represents the movement
{North, South, East, West, None}.

2.2 States

At every time step in the simulated world a predator is presented with sensory
information about all the objects in its environment, this includes the locations
of the prey and the other predator relative to the current predator. In order
to determine the global state both predators translate their coordinates and
the coordinates of the other predator to a new coordinate system. In the new
coordinate system all coordinates are with respect to the prey being positioned
at (0,0). This computation is performed as follows:

Tpred, = —Tprey (1)
Ypredy = —Yprey (2)
Tpredy, = Tpredy — Tprey (3)
Ypreds = Ypreds — Yprey (4)

In this manner both predators observe the same state at every time step. This
is necessary for the predators to learn and represent a global policy. A state is
then defined by the tuple {Zpred, , Ypreds Tpreds» Tpreds -

Size Issues and Solutions Using the complete grid makes the state space
very large. Given a grid of 15x15 = 225 cells, pred; can occupy one of the 224
locations not occupied by the prey, and preds can occupy one of the 223 locations
not occupied by the prey and the other predator. Therefore the total state space
based on the full grid consists of 224*223 = 49,952 states.

During the learning phase of the Q-learning algorithm all state-action pairs
are visited infinitely often and a discount factor determining the value of delayed
rewards, -y, decreases slowly with time. Both of these conditions are required to
ensure the algorithm converges to the optimal control strategy, @* [5], but the
first becomes increasingly challenging to achieve as the size of the state space
grows. If one uses the complete grid the algorithm will converge very slowly and,
because a Q-value is stored for each state, the total number of stored Q-values
will be very large.

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 3

Algorithm 1 Pseudo code of our implementation of the Q-Learning algorithm

Q1(s,a) « arbitrary value
Q2(s, a) < arbitrary value
for each episode do
s < undefined
a < undefined
repeat
observe the new state s’
receive immediate rewards 71 and rs
if s’ is a non-terminal state then
Vi(s') = maza(Qu(s', a))
Va(s') maza(Qu(s', a))
else
Vi(s') <0
Va(s') <0
end if
if predator 1 then
Q(—Ql, V(—Vl, T T
else
Q<+ Q2, VVo, 112
end if
if s is defined & a is defined then
if capture_case equals 3 then
Q(s,a) < Q(s,a)* (1 —a) +ax* (r+vxV(s))
else
Q1 (5,0) Qi(s,a) (1 — @) + ok (ry +7 Vi(s))
Q2(s,a) < Q2(s,a) * (1 —a) + a* (r2 + v x Va(s'))
end if
end if
compute the exploration function e
if e equals true then
a’ <+ random action
else
choose optimal action a’ from state s’ using policy derived from Q
end if
54+ s
a <+ a
make the move m corresponding to action a’
until s is terminal state
end for

4 Peter Lubell-Doughtie and Davide Modolo

To address this problem we note that many locations on an NxN grid are
symmetric and actions being taken in symmetric locations can be represented
by a single action that is appropriately reflected through the lines of symmetry.
Furthermore, any symmetrically related locations can share the same Q-value
and thereby significantly decrease the total state space. A simple example is
given by the states {—3,—1,—5,—2} and {3,1,5,2} in which the two predators
are in different locations, but are positioned in a rotationally equivalent manner
with respect to the prey. These two states can therefore share the same Q-value
and the direction of movement can be rotated to produce the appropriate action.

In order to reduce the size of the state space we use this property of the grid
and reposition both predators by reflecting their coordinates with respect to the
axes x, y and x = y. This symmetry is visually depicted in Fig. 1. The procedure
accomplishing this reflection is shown in Algorithm 2.

While shifting the predators positions in order to determine the state, we also
need to keep track of how their available moves {m1, mq, ms, my, ms} are reori-
ented by these reflective operations. In order to do this we create a 4-tuple d =
{d1,da,ds,ds}, initially associated with the directions { North, South, East, West}.
As we apply reflections, we reorganize the elements in d so that making the move
d;, in its position as indicated by the state, is symmetrical to making the move
m; given the predator’s actual position on the board.

Using this state space reduction technique we are only required to represent
the location of pred; relative to the grid cells in the first quadrant which are on
or south of the line x = y. In a 15x15 grid a predator can only occupy the 7
cells of the line y, the 7 cells of the line y = x (the 8th cell of both these lines
is occupied by the prey) and the 21 cells between these two lines. Using this
strategy the total state space is significantly smaller that the original space of
49,952 states.

2.3 Actions a

So far we have discussed which moves are available for the predators at any
location on the grid. Now we will introduce the notion of an action and describe
what actions are available to the predator at every state of the world. Without
the state space reduction described in the previous subsection each move would
correspond to a unique action, but thanks to the state space reduction, sym-
metrical board positions map to the same state and therefore we can project
symmetrical moves to the same action.

For an independent learning policy, each predator has five actions available to
it. These actions form a 5-tuple {a1, as, as, a4, a5} respectively representing the
movements { North, South, Fast, West, None}. At any state each of the preda-
tors will take an action independently from the action of the other predator.

For the joint learning policy each predator still has five actions available to
it. However, since we are learning a joint policy, we consider 25 possible joint
actions which form the 25-tuple {ai1,...,a15,a21,...,a51} where a;; represents
the joint action of pred; taking individual action 7 and preds taking individual

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 5

Fig. 1: Symmetry in the state space. The strategies of the ghosted predators’
locations are symmetrically homomorphic to the strategy of the solid predators’
locations below the x = y axis in the first quadrant.

Algorithm 2 State Space Reduction

translate (Zpredi, Ypred1) and (Tprea2, Ypreaz) following Eq. 1, 2, 3, 4
(d1,d2,ds,ds,ds) < (N, S, E,W, None)
if (Zprear <0) or (Tprear == 0 and Tprea2 < 0) then
Tpredl — —ZTpredl
Tpred2 — —Zpred2
swap ds and dy
end if
if (Ypredar < 0) or (Yprea1 == 0 and Ypreq2 < 0) then
Ypredl — —Ypredl
Ypred2 — —Ypred2
swap di and d2
end if
if (wp'redl < ypredl) or (mp'redl == Ypredl and Tpred2 < yp'redZ) then
SWap Tpredl and Ypredl
SWap Tpred2 and Ypredz
swap di and ds
swap dz and dy
end if

6 Peter Lubell-Doughtie and Davide Modolo

action j. At any state each of the predators will take the same joint action
possibly representing different individual actions.

2.4 Q-learning

For an independent learning policy, each predator maintains a function Q(s, a),
which provides a mapping from states to 5-tuples {v1, ve, v3, v4, v}, where v; is
the Q(s,a) value for taking action a; in state s. The map at the ith iteration of
the algorithm is defined by:

Qi+ (1=)Qi—1(s,a) + ai(r +v* Vi_a(s')) (5)

where « is the learning rate — described below in subsection 2.6, v is the dis-
counted factor — described below in subsection 2.7, and V (s) is the value of state
s defined by:

Vi = max Qi(s,0) (6)

which is equivalent to the value of the best action available to pred; in state s.

For the joint learning policy, each predator maintains two different maps,
Q1(s,a) and Qa(s,a), which correspond to the Q-value maps for pred; and
preds, respectively. Q1(s,a) and Qz(s,a) provide a mapping from states to 25-
tuples {Uklh ooy VK15, Uk21y ooy Uk25y cevy eevy UkBLy cevs Uk55}, where Ukij 1s the Qk(S, a)
value for predy, taking the joint action a;; in state s. Given this representation
predy, computes the value of a state s as:

V= max Q(s,a") (7)
where)
a* = argmax Z Qr(s,a) (8)
¢ k=1

which is equivalent to the best joint action available to both predators in state
s.

To illustrate how the Q-learning algorithm works in our game, consider a
single action taken by pred;. Let’s say the predator moves North and it receives
an immediate reward for this transition. It then applies the training rule of
Equation 5 to refine its estimate of @) for the state-action transition it has just
executed. According to the training rule, the new @ estimate for this transition
is the o weighted sum of received reward and the highest @) associated with
the resulting state, where this resulting state reward is discounted by ~. Each
time the predator moves forward from an old state to a new one, Q-learning
propagates () estimates backward from the new state to the old one. At the
same time, the immediate reward received by the predator for the transition is
used to augment these propagated values of Q.

Consider applying this algorithm to the grid world where catching the prey
gives the greatest reward and can therefore be seen as the goal state. Since this
world contains an absorbing goal state, we will assume that training consists of

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 7

a series of episodes. During each episode, the predator begins at some randomly
chosen state and is allowed to execute actions until it reaches the absorbing
goal state. When it does, the episode ends and both prey and predators are
transported to a new randomly chosen initial state for the next episode.

2.5 Reward Function r

After experiment with various different reward schemes we found that Occam’s
Razor held: simpler is better. We reward predators by combing a base reward,
rp with a reward shaping function to calculate the final reward for pred;, r;. At
every time step the predators receive a base reward of -1 unless they capture
the prey, in which case they receive a base reward of 0, as indicated in Table
1. It may seem intuitive to explicitly penalize the predators for colliding with
each other or colliding with the prey but this is unnecessary and can potential
harm performance. We can see this by noting that the goal of the predators is
only to minimize the time taken to capture the prey. When the two predators
are far from the prey, but close to each other, they can decrease capture time
by colliding with each other and subsequently being randomly placed closer to
the prey.

Table 1: Predator rewards at each time step.
Action | Reward
Capture 0

—Capture -1

Reward Shaping Because the state, even when reduced, is quite large, using
these base rewards alone would result in very slow convergence. Fortunately, the
distance between the predators and prey provides additional structure in the
state space that we can exploit to decrease convergence time. We use reward
shaping based on the change in Manhattan distance between the predators and
prey to shape the predators’ policies.

In the independent policy each predator stores the previous distance between
itself and the prey, for pred; let this be d;. This is calculated using the Manhattan
distance: d; = |Zpred;| + |Yprea;|- In the joint policy each predator’s reward is
dependent upon the state of both predators. Therefore, the joint policy calculates
the sum over all predators’ Manhattan distances: d; = Zi:l |Zpreds | + |Ypreds |-
Based upon these distance calculations the final reward is then computed as:

TiZdi—d;—’l“b (9)

where d} is the current distance between the predator and the prey and d; is the
stored previous distance. When a predator has captured a prey d; = 0, 1, = 0
(as seen in Table 1), and d; = 1, therefore Eq. 9 simplifies to r; = 1.

8 Peter Lubell-Doughtie and Davide Modolo
2.6 Learning Rate «

The learning rate is a decreasing function of time that is defined in the range
[0,1]. We use a linear alpha function defined by:

10
0, if 7, > 7 (10)

{ai * L;T"), ifr, <7
o = 1

where «; is the initial learning rate, 7; is the total number of episodes during
which the predator learns, and 7,, is the current episode number. From Eq. 5 we
see that when o = 1 the predator will only consider the most recent information
obtained about the value of the state and when o = 0 the predator will not learn
anything new.

Through Eq. 10 we decrease the value of o as the number of episodes in-
creases, so that the effect of new state information becomes smaller as training
progresses. By reducing the value of o at an appropriate rate during training,
we converge to the optimal Q-function.

2.7 Discount Factor v

The discount factor is a constant that determines the relative value of delayed
versus immediate rewards. In particular, rewards received i time steps into the
future are discounted exponentially by a factor of 4*. Where ~ is defined in the
range [0,1] and from Eq. 10 we see that if we set v = 0, only the immediate
rewards are considered. As we set 7y closer to 1, future rewards are given greater
emphasis relative to the immediate reward.

In our implementation, the reward function only returns non-negative re-
wards if the predator moves closer to the prey at every time-step, until it cap-
tures it. As a result, a predator that attempts to maximize the reward function
is guaranteed to reach a terminal state in every episode. Therefore, we can set
7 to 1 and still have a convergence guarantee.

2.8 Exploration Function e

As already introduced in Subsection 2.2, one of the conditions that guarantees
the Q-learning algorithm will converge, is that all state-action pairs must be
visited infinitely often during the learning task. To ensure that this happen we
introduce an exploration function e. The exploration function was tested as an
e-greedy function and using a probabilistic exponential weighted by reward. This
ensures that the predator will not always choose the optimal action a*, and that
all the states will be visited infinitely often. The function e returns true or false,
respectively indicating that we should explore and choose a non-optimal action
or exploit and choose the optimal action.

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 9

e-greedy This exploration function is computed at each time step and decides
either to take a pseudo-random action from the possible actions or to take the
optimal action. In the case e returns false the predator will choose an action a
randomly, while in case it returns true it will choose the optimal action a*.

The e-greedy strategy computes the value of e with a steadily decreasing
probability choosing a random action, as follows:

(11)

true, if (1, <7e) A (n <6k)
false, otherwise

where n is a randomly generated real number in the range [0,1], €; is the initial
exploration rate also in the range [0,1], 7. is the total number of episodes during
which the predator explores, and 7, is the current episode number, as above. As
more episodes pass the chances of exploring decrease relative to the value of ¢;.
After all the learning episodes have passed the predator shifts to exploitation
and no longer chooses non-optimal actions.

Probabilistically e-greedy As an alternative we assigned probabilities to each
action based on their reward and chose an action according to this probability
distribution. We use the probability distribution suggested by Mitchell [2]. In
case of the individual policy, for pred;, we define the probability of action a; in
state s by:

k.Q(s,ai)

P)l(al|5) = Z] le(s,LL]‘)

(12)

where k is set to constant plus a function of the number of episodes passed. We
set k=14 7,/7e.

For the joint policy the probability of a joint action equal for both predators
based on both of their Q(s,a;) values. It is computed as:

L Q1(s,ai)+Q2(s,a:)
D SR

P(a;|s) (13)

If e from Eq. 11 is equal to true we choose an action according to Eq. 12 in the
individual policy or according to Eq. 13 in the joint policy. If e is equal to false
we choose the best action.

3 Experiments

We performed experiments with a fixed parameter set for the individual and joint
policies given their respective learning problems. We tested our implementation
on a 15x15 and 10x10 grid.

10 Peter Lubell-Doughtie and Davide Modolo

3.1 Parameters

We ran different experiments with various values for the parameters [a;, v, €;,
71, Te]. We achieved good results for both policies using the parameters in Table
2. As shown in Table 2, we set «; to a low value so that the predator will
learn slowly and will not be considerably affected by unexpected behaviors. As
described in Subsection 2.7, we set 7y equal to 1, and can guarantee that the
predator will reach a terminal state in every episode because we weight future
rewards to be more important than immediate rewards. We set ¢; to 0.75 so that
the predator has sufficient time to explore all states.

Table 2: Best tested parameter set

Parameter|Individual Policy|Joint Policy
o 0.15 0.15
¥ 1 1
€ 0.75 0.75
T 30,000 20,000
Te 15,000 5,000

As shown in Table 2, in the independent policy predators explore and learn
for a greater number of episodes compared to in the joint policy. In the joint
policy, we consider joint actions and therefore the number of explored state-
action pairs will be five times greater than for the independent policy. However,
because the joint policy is updating both predators’ @) values on each cycle it
should converge faster. We used different exploration and learning parameters
in the probabilistically weighted action selection method, we defer discussion of
those parameters until after presenting the results.

4 Discussion and Results

In Figure 2 we plot the learning curves (base 10 logarithm of the average cap-
ture time versus number of episodes passed) for the individual and joint policies
using a 15x15 grid. These plots clearly show quicker convergence for the joint
policy, as well as a larger maximum number of cycles before capture. Initially,
the algorithm for the joint policy performs much worse than the individual pol-
icy because (i) the state space is larger and (¢7) the problem is harder. In the
independent policy the predators only need to surround the prey for 1 time step,
while in the joint policy they must be next to the prey for 2 time steps.

As shown in Fig. 2a and 2b, for both policies we see a significant improvement
in performance over the first 7. episodes. This is because the predator is both
learning the optimal policy, and will be choosing better actions, and because the
exploration rate is decreasing, and the predator will therefore be more likely to
choose the optimal action. The predators still continue to learn until 7; episodes

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 11

Log Cycles ve Episode for Individual Policy

qum(# Cycles)

N 1 1 1 1 1
0 0s 1 15 2 25 3
Episode w10t
(a) Independent Policy
Lag Cycles vs Episods for Joint Policy
4.5

Iu_qm(# Cycles)

1 1
0 000 10000 15000
Episode

(b) Joint Policy

Fig.2: Learning curve obtained using the parameters described in Table 2 on a
grid of 15x15.

12 Peter Lubell-Doughtie and Davide Modolo

have passed, and we see a slight improvement during this time, at least in the first
10,000 episodes in 2a and in the first 4,000 episodes in 2b. For the independent
policy, we see that learning converges after a total of about 25,000 episodes. For
the joint policy learning converges after about 9,000 episodes.

Figure 3 shows the learning curve for the individual and joint policy on a grid
of size 10x10. As expected the number of cycles is lower over all the episodes,
the learning curve is more or less shifted towards y = 0. Learning the policies
on the smaller grid also results in faster convergence but only marginally so.

Table 3: Mean and Standard Deviation capture times for the final learned policy.

Grid Size e Policy Mean Cycles | Standard Deviation
15x15 Prob Individual 10.7742 3.9065
15x15 Prob Joint 15.8492 7.5963
15x15 | random | Individual 11.0281 4.3438
15x15 | random Joint 14.2913 5.5354
10x10 | random | Individual 7.8267 3.2410
10x10 | random Joint 11.1455 5.1007

The capture times for the final learned policy, averaged over the last 10,000
episodes after exploration has finished, is shown for both grid sizes in Table 3.
For the individual policy the means are 7.83 and 11.03 for the 10x10 and 15x15
grid sizes respectively. To put this into perspective, consider that if a predator
and prey are placed as far as possible from each other on the grid, e.g. at [x,y]
locations [0,0] and [7,7], their Manhattan distance equals 13. This distance equals
one plus the total number of predator moves needed to reach the prey, assuming
the prey doesn’t move. In the best case this distance is 1. Based on this we
estimate that on average the predator will need (13 —141—1)/2 = 6 moves to
be next to the prey, ignoring changes based on movement of the prey.

Based on this analysis an mean of 11 moves until capture is good and the
predators have likely learned a near optimal policy. For the 10x10 grid the same
analysis leads to an estimated 4 moves needed to be next to prey and the rounded
8 move strategy found by the our implementation again indicates it is likely that
a near optimal policy has been learned. The standard deviation in capture time
was 4.34 and 3.24 for the 15x15 and 10x10 grid respectively. We can interpret
this as resulting from the random starting positions of the predators and prey,
as well as the random movements of the prey.

For the 15x15 and 10x10 grid sizes the joint policy mean capture times are
14.29 and 11.15 respectively and the standard deviations are 5.54 and 5.10 re-
spectively. In the joint policy an extra cycle will be needed to stay next to the
prey for an additional time step. Therefore we’d expect these numbers to be
higher in the optimal policies. We can conclude that a near optimal policy was
learned for the joint action case.

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 13

Log Cycles vs Episode for Individual Policy
T

-
&}
=
[i} I 1 1 L 1
1} 05 1 15 2 25 3
Episode w10
(a) Independent Policy
Log Cycles vs Episode for Joint Policy
4.5

ID_qm(# Cycles)

1 1
0 000 10000 15000
Episode

(b) Joint Policy

Fig. 3: Learning curve obtained using the parameters described in Table 2 on a
grid 10x10.

14 Peter Lubell-Doughtie and Davide Modolo

Log Cycles ve Episode for Individual Policy Probabilistic Action Choice
T T

qum(# Cycles)

N | | | | 1 1 1
0 2000 4000 G000 2000 10000 12000 14000 16000
Episode
(a) Independent Policy
Log Cycles vs Episeds for Joint Policy Probalilistic sction Choice
5 T T T T T T

Iu_qm(# Cycles)

i} 1 I 1 I I I
a0 1000 2000 3000 4000 000 Ga0an Jaan
Episade

(b) Joint Policy

Fig. 4: Learning curve obtained for probabilistic € using the parameters described
in Table 2 on a grid 15x15.

Multiagent Systems 2010 (Multiagent) Reinforcement Learning 15

4.1 Probabilistic €

The learning curves for the individual and joint policies using probabilistic €
learning are presented in Fig. 4. Note that in the individual probabilistic € ex-
periments we set the number of episodes before learning to 7. = 10,000 and
7; = 15,000. The statistics are computed for 1000 episodes from 15,000-16,000.
In the joint policy 7. = 4,000 and 7; = 6, 000.

We see in Fig. 4 that using probabilistically chosen actions results in sig-
nificantly faster convergence than is obtained with random actions, depicted in
Fig. 2. In other experiments with the individual policy, after only 1,000 cycles
we were able to find policies as good as the policy found after 20,000 cycles
with randomly chosen actions. This is not represented in Fig. 4b because of the
large 7. and 7; values used. Setting 7. to 1,000 produces quick convergence but
the converged to value was greater then the value produced with 7. = 10,000,
although still lower than or comparable to the converged mean cycles with ran-
domly chosen actions. In an online learning setting, or when episode runs have
a cost, quick convergence may be desirable. We also expect that the manner in
which k changes over time could be adjusted to produce improved performance
with respect to time to convergence and value converged to.

The probabilistic individual policy outperformed the random policy with a
lower mean number of cycles until capture of 10.77 and a lower standard devi-
ation of 3.91. As we can see by comparing Fig. 2b to Fig. 4b, the probabilistic
joint policy converged faster. However, the probabilistic joint policy performed
noticeably worse, with a mean number of cycles until capture of 15.85 and stan-
dard deviation of 7.60. The poor performance of the probabilistic action choice
is most likely related to a suboptimal method for selecting the probability distri-
bution over actions and a suboptimal method for changing this distribution over
time. We would expect that with improved probability assignment, and longer
run time, the mean cycle time could be competitive with or improve over the
random action selection method.

5 Conclusion

In this second assignment we dealt with the problem of how autonomous agents
that sense and act in their environment can learn to choose optimal actions to
achieve their goals. We focused on temporal difference learning, and in particular
on the Q-learning algorithm. Q-learning can acquire optimal control strategies
from delayed rewards, even when agents have no prior knowledge of the effects of
their actions on the environment. The Q-learning algorithm is proven to converge
under certain conditions, as explained in the previous sections. However, this
convergence can be very slow in the case of a large number of state-action pairs.
To solve this problem we did not use a hard-coded policy when far from the
prey, but instead implemented a powerful strategy which uses a set of geometric
operations to reduce the number of possible actions available to the predators
at each state.

16 Peter Lubell-Doughtie and Davide Modolo

The performances obtained by the independent and the joint policy were
satisfactory. Significant improvement in convergence time and some improvement
in mean capture time was seen using probabilistically chosen exploration instead
of random exploration. However, improvements could be made to achieve an
even better capture time and reduce the time taken to convergence. We could,
for example, use more complex reward shaping, instead of the simple shaping
technique based on the Manhattan distance. This may improve the performance.

Another problem that we would like to solve in future work is how to manage
an environment with a larger number of predators. The independent policy we
implemented will work fine with more predators, since each predator stores a sin-
gle Q(s, a) map with a set of possible actions a = (a1, as, as, a4, as). However, the
joint policy will suffer heavily, since every predator has to chose a joint action in
a space of actions that will increase exponentially with the number of predators.
This problem could be solved using Sparse Cooperative Q-Learning [1], which
uses Q-learning to learn the coordinated joint actions of a group of cooperative
agents, using a sparse representation of the joint state-action space of the agents.

References

1. Jelle R. Kok and Nikos Vlassis, Sparse cooperative Q-learning, Proceedings of the
International Conference on Machine Learning (Banff, Canada) (Russ Greiner and
Dale Schuurmans, eds.), ACM, July 2004, pp. 481-488.

2. Tom M. Mitchell, Machine learning, McGraw-Hill, New York, 1997.

3. Richard S. Sutton and Andrew G. Barto, Reinforcement learning - an introduction,
Adaptive Computation and Machine Learning, MIT Press, 1998.

4. Nikos Vlassis, A concise introduction to multiagent systems and distributed artificial
intelligence, Morgan and Claypool Publishers, 2007.

5. Christopher J. C. H. Watkins and Peter Dayan, Technical note g-learning, Machine
Learning 8 (1992), 279-292.

