
Elements of Language Processing and Learning
Project 1: Statistical Parsing and CYK?

Peter Lubell-Doughtie, 6095445 and Davide Modolo, 6209033

University of Amsterdam

1 Introduction

In this report we describe our implementation of a procedure to extract prob-
abilistic context free grammars (PCFGs) from a Treebank and then, given a
PCFG, parse sentences using the Cocke-Younger-Kasami (CYK) algorithm. We
begin by providing an introduction to PCFGs and the CYK algorithm in Sec.
2, then discuss implementation details in Sec. 3. In Sec. 4 we discuss our results
and finally we conclude in Sec. 5.

2 Statistical Parsing

The field of statistical parsing is concerned with generating grammars and pars-
ing sentences by apply automated methods to real world text corpuses. An ex-
isting bracketed corpus is used as a training set to build the grammar, often
expressed as a context free grammar that may or may not be in Chomsky nor-
mal form. The important advantage which statistical grammar creation has over
hand crafted grammars is that in statistical grammar creation a grammar is
created for the data such that every encountered bracketed sentence can be gen-
erated by the grammar. Whereas, with hand crafted grammars, the data need
not fit the created grammar. This implies that generated grammars are neces-
sarily capable of making better use of the existing data because each production
in each bracketed sentence will be accounted for in a generated grammar.

2.1 Probabilistic Context Free Grammars (PCFGs)

Put simply, a probabilistic context free grammar (PCFG) is a context free gram-
mar in which probabilities are assigned to each rule. These probabilities represent
the likelihood of a particular rewrite amongst the set of possible rewrites and the
sum over all possible rewrites must equal unity. Formally, a PCFG G consists
of:

– a set of terminals, {wk}, k = 1, · · · , V
– a set of nonterminals, {N i}, i = 1, · · · , n

? This report completes steps 1-2 of project 1 for Elements of Language Processing
and Learning 2010, professor Khalil Sima’an, teaching assistant Gideon Wenniger.

2 Peter Lubell-Doughtie and Davide Modolo

– a start symbol, N1, which we define as TOP
– a set of rules, {N i → ζj}, where ζj is a sequence of terminals and nontermi-

nals.
– and a set of probabilities P (N i → ζj |N i) for each rule such that:

∀i
[∑

j

P (N i → ζj |N i) = 1

]
(1)

The probabilities P (N i → ζj |N i) are defined as the relative frequency of the
productionN i → ζj . Given a treebank tb, which contains the set of nonterminals
and terminals, we can create the set of productions, R, and a frequency function,
FR : R → N+, which maps from productions to non-zero natural numbers
representing the frequency of each rule.

We collect these productions and the frequency function into a multi-set
Πtb = 〈R,FR〉. The relative frequency, rf(·, ·), of a specific production and
Πtb is then defined as:

rf(N i → ζj ,Πtb) =
FR(N i → ζj)∑

Ni→ζk∈R FR(N i → ζk)
(2)

where the frequency of one production N i → ζj is represented in the numerator
and the denominator normalizes this frequency by summing over all productions
from N i to any sequence of terminals and nonterminals. Based upon this we
define the probability of a production as its relative frequency:

P (N i → ζj |N i) ≡ rf(N i → ζj ,Πtb) (3)

for each nonterminal N i and terminals and nonterminals ζj . By construction we
have ensured that, for all nonterminals N i in our data set, P (N i → ζj |N i) ∈
(0, 1] and that Eq. 1 holds.

Given a PCFG we will be able to generate all possible parses for a sentence by
determining which productions can generate each terminal word in the sentence,
then which productions can generate these found nonterminals, and so on. We
can further determine the likelihood of a particular parse by examining the
probabilities for the application of each production.

2.2 Parsing with the CYK Algorithm

The CYK algorithm operates by considering all possible productions that could
have generated the sentence and then, for each adjacent pair of nonterminals
A and B, considering all possible nonterminals N for which there is production
N → A B. Assuming we are given a sentence S = w0 . . . wn−1, our goal is to fill a
chart matrix C with nonterminals such that if there is a nonterminal N ∈ C(i, j)
this nonterminal spans the words i . . . j, where each entry in the matrix is a set.

We can divide this process into an initialization step and a deduction, or
generation, step. In the initialization step the CYK parser considers all 0 ≤ i <

Project 1: Statistical Parsing and CYK 3

n and adds a nonterminal A and associated terminal wi to C(i, i + 1) for all
productions such that A→ wi.

In the chart generation step the algorithm considers all strings of length > 1.
We will write wij to refer to the substring of S from word wi to wj . We will
add a nonterminal N to A(i, j) given there is at least one rule N → A B and
there exists a k, 1 ≤ k < j, such that A derives the first k symbols of wij and B
derives the final j − k symbols. This condition holds if and only if N can derive
wij through one or more steps, written as N

∗⇒ wij .

3 Data and Implementation

The first module implemented is a grammar creator that extracts a PCFG from
a given treebank corpus. The second is a CYK parser that creates a parse forest
for a sentence given a PCFG in the format created by the first module. All code
is implemented in Python.1 We will first discuss the data used and then the
implementation details of these modules.

3.1 The Penn Treebank

The implementation is designed to be used with the Penn Treebank Wall Street
Journal (WSJ) corpus. For convenience we use a binarized version of this corpus
in which all trees are binary trees, excepting trees headed by the start symbol
TOP which may be unary or binary. The trees are presented in a text file
as sentences bracketed with parentheses and tagged with the standard Penn
treebank part-of-speech (POS) tags.

3.2 Extracting a PCFG from the Treebank

We chose the data structures of our PCFG such that we can quickly retrieve the
left hand side (LHS) of any rule given the right hand side (RHS) and quickly
retrieve the RHS given the LHS. Recalling N i is a nonterminal and ζj is a
sequence of terminals and nonterminals, the treebank is parsed into three data
structures:

– cfg l2r, a mapping from each LHS N i to a set of RHSs {ζj}.
– cfg r2l, a mapping from each RHS ζj to a set of LHS terminals {N i}.
– pcfg, a mapping from a tuple of LHS N i and RHS ζj to P (N j → ζj |N i).

We will occasionally use Python terminology and refer to these data structures
as dictionaries.

To efficiently create these data structures we begin by creating cfg l2r as
a multi-set were the ζj need not be unique, noting that the cardinality of this
multi-set will be equal to the total number of mappings from N i to any ζj ,
which is the denominator in Eq. 2. Additionally, we calculate the numerator

1 Code must be run under Python version 2.7 with the argparse module installed.

4 Peter Lubell-Doughtie and Davide Modolo

of Eq. 2 by incrementing pcfg(N i, ζj) every time the production N i → ζj is
seen, thereby giving us the frequency, FR(N i → ζj). We finally convert pcfg

to a probability distribution by setting pcfg(N i, ζj) equal to itself, the relative
frequency, divided by the cardinality of cfg l2r(N i), the total frequency for
nonterminal N i:

pcfg(N i, ζj) =
pcfg(N i, ζj)

|cfg l2r(N i)|
(4)

this is a normalization step. We then convert cfg l2r from a multi-set to a set.
The actual parsing of the treebank is done by counting parentheses, which was

found to be simpler and less computationally intensive than a recursive method.
We check the correctness of the probability distributions in our PCFG by testing
that the sum over all N i → ζj is equal to unity, as required by Eq. 1. Due to
rounding errors, the largest divergence from unity is 0.00000000000022881697,
which we do not expect to significantly affect our calculations. We also checked
the correctness of our implementation by examining the productions created by
hand.

3.3 CYK Implementation

Using the data structures described in Sec. 3.2 we can now use the CYK al-
gorithm to generated parses of a sentence given our grammar. To efficiently
keep track of which RHS productions cover the sentence, e.g. which ζ exist such
that the production TOP → ζ can generate a parse of the entire sentence,
we store ζ in a dictionary covering indexed by i, j, TOP . To retrieve the set
of productions from TOP covering the sentence we simply retrieve the entry
covering(0, n, TOP).

The chart initialization step is shown in Algorithm 1. After completion we
will have filled the chart with all nonterminals that generate strings of length 1.
After this is done we proceed to chart generation.

Algorithm 1 Chart initialization pseudo code.

Require: C, cfg r2l

for 0 ≤ i < n do
for A ∈ cfg r2l(wi) do
C(i, i+ 1)← 〈A〉

end for
end for

The chart generation step is shown in Algorithm 2. We represent i by begin,
j by span, and k by split to accord with their semantic interpretation. The
chart generation algorithm operates by considering all sentence spans of length
2 through n and for each span considering subsentences starting at 0 through
n − span and all splits within this span. For example, in the first iteration,
span = 2, begin = 0, end = 2, and split = 1. On lines 5-6 the algorithm retrieves

Project 1: Statistical Parsing and CYK 5

the values of C(0, 1) and C(1, 2). Referring to Algorithm 1 we can see that these

Algorithm 2 Chart generation pseudo code.

Require: C, covering, cfg r2l

1: for 2 ≤ span ≤ n do
2: for 0 ≤ begin ≤ n− span do
3: end← begin+ span
4: for begin+ 1 ≤ split ≤ end− 1 do
5: {A} ← C(begin, split)
6: {B} ← C(split, end)
7: for Ax ∈ {A} do
8: for By ∈ {B} do
9: for N ∈ cfg r2l(Ax, By) do
10: C(begin, end).add(〈N〉)
11: covering(begin, end,N).add(〈A,B〉)
12: end for
13: end for
14: end for
15: check unary(begin, end)
16: end for
17: end for
18: end for

values will be non-empty nonterminals that generated single word terminals.
The algorithm will then proceed, in lines 7-9, to iterate over any rules that can
be generated from the combination of the rules generating these terminals. As
begin is incremented this same procedure continues for all possible beginnings
and splits for strings of length 2, and then so on up to strings of length n.

Algorithm 2 only accounts for binary productions. Therefore, we see on line
15 that, after cycling over all the possible binary combinations, we call the
function check unary to determine if we can add any unary productions. This
is shown in Algorithm 3.

The check unary algorithm tests all nonterminals B covering the entire span
begin to end and updates C and covering if there is a production TOP → B.
Our data set only has non-binary production from our start symbol TOP and
therefore we will only consider TOP as a possible LHS. For other data sets with
other non-binary rules the algorithm could be simply extended by referring to
the cfg r2l dictionary.

4 Results and Discussion

We applied our grammar generation module to the WSJ corpus generating the
data structures describe in Sec. 3.2. We then ran experiments on this grammar to
query various POS-tag statistics. Additionally, we applied our CYK algorithm to
the grammar and a set of test sentences, creating a list of covering productions.

6 Peter Lubell-Doughtie and Davide Modolo

Algorithm 3 Pseudo code for a function to check for unary productions. We
are only concerned with unary productions that have an LHS equal to our start
symbol TOP .

Require: C, covering, pcfg
Require: begin, end
1: added← true
2: while added do
3: added← false
4: for B ∈ C(begin, end) do
5: if pcfg(TOP, (B)) > 0 then
6: C(begin, end).add(TOP)
7: covering(begin, end, TOP).add(〈B〉)
8: end if
9: end for
10: end while

4.1 Syntactically Ambiguous Words

We can determine the set of syntactically ambiguous words by retrieving all the
values from the structure cfg r2l which have a length greater than 1, indicating
multiple nonterminals map to this particular terminal. In Table 1 we present
four syntactically ambiguous words. Note that we did not performing any case
folding, because case arguably provides significant information for a parser. In
Step 3 we will examine case folded versus not case folded parses and evaluate
this hypothesis to determine if case folding increases parse accuracy.

Table 1: Syntactically ambiguous words. Three significant digits have been re-
tained.

Word Possible Nonterminal Probability of Production

no DT 0.00740
UH 0.0722
RB 0.00271

Western JJ 0.00108
NNP 0.000875

lock V B 26.5×10−5

V BP 8.01×10−5

NN 3.76×10−5

JJ 1.63×10−5

refunding VBG 3.01×10−5

NN 26.9×10−5

JJ 4.90×10−5

These ambiguities are as expected. For example, the ambiguities for “no” are
divided amongst determiner, interjection, and adverb. The highest probability

Project 1: Statistical Parsing and CYK 7

is assigned to interjection, which is significantly higher that the probability as-
signed to the next highest, determiner, and the lowest, adverb. This is expected
and reflects our intuitive knowledge that “no” is most commonly used as an
interjection in English.

4.2 Most Likely Productions

We can calculate the most likely productions for a nonterminal by retrieving the
value pcfg(N i, ζj), for each j such that there is a production N i → ζj , and then
ordering these productions by decreasing probability. We present the most likely
production for the nonterminals {V P, S,NP, SBAR,PP} in Table 2. The low

Table 2: Most likely productions for {V P, S,NP, SBAR,PP}. Three significant
digits have been retained.

Nonterminal Most Likely Production Probability of Production

V P (VMD,V P@) 0.0768

S (NP,S@) 0.354

NP (DT,NP@) 0.128

SBAR (IN, S) 0.454

PP (IN,NP) 0.796

probabilities of the most likely productions for V P and NP compared to the
other nonterminals are expected because many more productions are headed by
V P and NP , thus dispersing their probability mass to a larger degree.

4.3 Covering Productions

The covering productions can be generated for an arbitrary input sentence given
the grammar. For example, consider the sentence:

The finger-pointing has already begun . (5)

We will show the set of productions from our start symbol to nonterminals that
can then generate this sentence, i.e. the set of nonterminals XP, Y P such that
TOP → XP (a unary production) or TOP → XP Y P (a binary production)
generate the sentence. This sentence is only covered by unary rules, which are
given below:

X S%%%%%V P INTJ S

NP ADV P PRN FRAG

SINV SQ PRN PP

SBARQ FRAG%%%%%NP SBAR ADJP

V P UCP

8 Peter Lubell-Doughtie and Davide Modolo

where the sequence %%%% marks a binarization. Importantly, we see that S is
present in this set, which is the correct production for this sentence as given by
the gold standard parse tree for this test sentence.

5 Conclusion

In this report we have presented an effective way to extract a PCFG from a
bracketed corpus of sentences. Our implementation stores additional data struc-
tures allowing quick access to production LHSs given an RHS and to production
RHSs given an LHS. Making using of these structures we implement the chart
parsing CYK algorithm, which generates a parse forest for a sentence based on
an extracted grammar.

We presented results of a statistical analysis of the grammar, including syn-
tactically ambiguous terminals and the most likely productions for common non-
terminals. We presented an example covering production output of CYK applied
to a test sentence used for the WSJ corpus. We found that the covering produc-
tions included the correct production TOP → S.

We have built the fundamental mechanics needed for implementing Viterbi
parsing, the inside algorithm and further extensions. It will be interesting to test
the effectiveness of Viterbi parsing and determine what changes can be made to
improve performance.

References

1. Daniel Jurafsky and James H. Martin, Speech and language processing: An introduc-
tion to natural language processing, computational linguistics and speech recognition,
1 ed., Prentice Hall, 2000.

2. Christopher D. Manning and Hinrich Schütze, Foundations of statistical natural
language processing, MIT Press, Cambridge, MA, 1999.

