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ABSTRACT

Echo state networks are a class of recurrent neural networks
containing a set of nodes and recurrent connections not sub-
ject to adjustment during training and thereby greatly re-
ducing the amount of time needed for training and the size
of the solution space. Much work has been done applying
this relatively new type of network to common problems in
parallel distributed processing, such as past tense predic-
tion and sentence processing. We continue this and apply
echo state networks to the problem of counting without a
counter. We find that echo state networks are successfully
able to learn to count by predicting the length of input in a
context free grammar. We find that networks with smaller
reservoirs produce more general solutions, which perform
better on test data.

1. INTRODUCTION

A general problem in the training of recurrent neural net-
works (RNNs) is that, because the weights between each
node in the network and all the nodes it is connected to are
variable, the solution space is enormous and the possibility of
finding a local minimum error value, as opposed to a global
minimum error value, is significant. The RNN method of
reservoir computing seeks to alleviate this problem by hold-
ing the weights in a portion of the RNN fixed, this portion is
called the reservoir, and only training weights on the output
nodes, and perhaps the input and bias nodes. This approach
is shown in Figure 1 which diagrammatically compares the
network configurations and dynamics in a standard RNN,
on the left, and a neural network using reservoir computing,
on the right. The standard RNN updates all the weights on
each iteration, while the reservoir computing based network
updates only the output weights.

Benefits of the reservoir computing approach include that
it is computationally universal (Maass et al. [2006]) and that
it is easily extendible. Concerning extendability, if we were
using a standard recurrent neural network, had trained it to
perform some specific task, and now want to train it to per-
form a different but perhaps related task, we would have to
retrain the entire network, potentially modifying each con-
nection during training and making little use of the current
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network, beyond providing initialization values. Alterna-
tively, if we had trained a reservoir computing based net-
work to perform some specific task and are now retraining
it to perform a different but perhaps related task, we could
maintain the trained network and outputs with their param-
eters as is and then simply add an additional output layer
with adjustable weights. In the first method, using sim-
ple recurrent networks, any representations already learned
by the network will likely be destroyed as the network ad-
justs its weights to solve the new task. In contrast, using
the reservoir computing method we maintain the represen-
tations already learned by the network and are able to learn
an additional new representation solving the new task.

A further benefit of reservoir computing stems from the
biological plausibility of the training method. The weights
between neural connections within the brain do not adjust
themselves according to the highly dynamic fashion exhib-
ited by simple recurrent networks. Static or much more sta-
ble connection weights, as used in reservoir computing, are
closer to the function of the brain. Additionally, the design —
the neural connection topology — of the reservoir can be built
to mimic the actual cortical networks of the brain. Design-
ing reservoirs to approximate the actual construction of the
brain has been shown to improve performance in Haeusler
and Maass [2007].

1.1 Echo state networks

The two most often used approaches to reservoir comput-
ing are liquid state machines, as first reported in Maass et al.
[2002], and echo state networks, as first reported in Jaeger
[2001]. Liquid state machines are designed to offer a bio-
logically realistic model of neural interaction whereas echo
state networks are aimed more towards applications. Here
we will concern ourselves only with echo state networks.

The defining characteristic of an echo state network is
that it must satisfy the echo state property: the effect of a
previous state x(n) and a previous input u(n) on a future
state x(n + k) should gradually vanish over time, i.e. as
k — oo. Whether or not the echo state property holds for a
reservoir, W, is related to the value of the largest absolute
eigenvalue or spectral radius, p(W), of the reservoir. In
most cases if p(W) < 1 then W has the echo state property,
however this is not an implication of p(W) being less than 1.
In general a good reservoir can be created by setting p(W)
less than but close to 1.

The topology of the reservoir used by the echo state net-
work has a significant impact on the function of the network
and its ability to predict signals. Therefore, how to create



Figure 1: Training of a standard RNN displayed on the left hand side labelled A, compared to the training
of a reservoir computing based network on the right hand side labelled B.

the topology of the reservoir used in an echo state network
is an active area of research. We’d like our reservoir to be
able to predict many features on multiple time scales within
our data. To do this it is usually helpful to use a reservoir
which is big, sparse, and randomly connected. However, in
analyzing the results we will see that if the reservoir is “too”
big over-fitting can occur.

1.2 Counting without a counter

It has been standardly assumed that for a system to simu-
late a context free language it must use something akin to a
stack, such as in a pushdown automata, for it to keep track
of state. This stack would predict relationships in tempo-
ral data by internally counting the appearance of signals.
Parallel distributed processing systems have no predefined
internal counting mechanism and would have to either cre-
ate one during training or discover another method that they
can use to keep track of state. In experiments it has been
shown that neural networks opt for the first choice and will
develop counters in order to predict state in a deterministic
context free grammar (Rodriguez et al. [1999]).

We proceed in Section 2 with a description of previous
work applying echo state networks to real world problems
and specifically to next word prediction tasks. In Section
3 we present the implementation used for the echo state
networks and the context free languages. In Section 4 we
describe the experiments to be performed, then in Section 5
we present the results of these experiments. In Section 6 we
discuss the results of the various experiments and finally we
conclude in Section 7.

2. PREVIOUS WORK

Research into how to create and adjust the reservoir in
an echo state network has investigated biologically inspired
topologies, modular topologies using sub-reservoirs, and var-
ious other methods. There has also been research into global
unsupervised methods which optimize reservoir structure
based on the input signal but irrespective of the target sig-
nal. Other methods have researched supervised reservoir
optimization, where reservoir structure is changed based on
both the input signal and the target signal. The reservoirs
used in our experiments are based on the classic echo state
network approach in which the reservoir is randomly cre-
ated and then scaled to have a specific spectral radius. This
approach does not involve unsupervised or supervised opti-

mization.

Echo state networks have been shown to outperform other
methods, be they neural network methods or not, on a vari-
ety of prediction and classification tasks. Echo state net-
works have been shown to produce state of the art per-
formance in predicting chaotic dynamics (Jaeger and Hass
[2004]), the Japanese Vowel benchmark (Jaeger et al. [2007]),
and spoken digit recognition (Verstraeten et al. [2006]). Rel-
evant to the task at hand, recent work has show impressive
performance of echo state networks on next word predic-
tion. In Tong et al. [2007] echo state networks are able to
not only predict the next word but are additionally able to
make good predictions of verb agreement beyond the dis-
tance of bigrams and trigrams.

Frank and Ceriasky [2008] show that in sentence process-
ing tasks echo state networks are able to outperform Markov
models and, if inputs are represented in an alternate but
still task independent manner, outperform standard simple
recurrent networks, such as those used in the next word pre-
diction task of Elman [1990]. The ability of an echo state
network to outperform the simple recurrent networks used in
Elman’s original work is significant because it demonstrates
that with more constrained dynamics superior results can
be achieved. In additional work following up on the orig-
inal Frank and Cerfiasky [2008] paper, it was shown that
the echo state network, with adjusted input weights, solves
the next word prediction task by producing a simple finite
state machine able to generalize well (Frank and Jacobsson
[2010]).

The impressive performance of echo state networks on
next word prediction tasks suggests that they might also
perform well on other related tasks, such as the “counting
without a counter” work done by Rodriguez et al. [1999]. In
the original work Rodriguez et al. show that recurrent neu-
ral networks can be trained to count by predicting the next
state in a deterministic context free language represented by
sequences of strings of the form a™b" for different n. In fur-
ther work Rodriguez shows that simple recurrent networks
can do even better and represent aspects of context sensi-
tive languages by storing counting information (Rodriguez
[2001]).

3. METHOD

3.1 Echo state network implementation



The echo state networks used are based on leaky integra-
tor neurons as described in LukoSevi¢ius and Jaeger [2009].
Given a neuron signal x and an input signal u, the neuron
signal at time step n is defined as:

x(n) =(1—-a)x(n—1)+af(Wipu(n) + Wx(n—1)) (1)

where a is a leaking rate, which controls the speed of dynam-
ics, W;,, is the weight matrix for the input signals, and W
is the weight matrix for the neuron signals — the reservoir.
The output signal, y, is generated by the network as:

y(n) = Wourx(n) (2)

and for a set of training examples can be viewed as a system
of linear equations where:

WouX = Yta,rget (3)

which is to be solved for Wy,:. The implementation we use
solves Equation 3 using linear regression by computing the
pseudo inverse:

Wout = Yta'rgetXT (XXT)+ (4)

which we found to produce better results than ridge regres-
sion.

The reservoir was created with a spectral radius, p(W),
scaled to 0.9. The nonlinear function f used in Equation
1 is the hyperbolic tangent, the standard non-linear func-
tions used with echo state networks. In each experiment the
size of the reservoir was varied, as described below in the
Experiments section.

3.2 Representation of context free languages

To evaluate the performance of echo state networks in the
task of predicting context free languages we use the same
inputs as those used in Rodriguez et al. [1999]. These inputs
consist of strings of the form a"b™ with more strings for
shorter values of the length n. The strings are distributed
according to length n with 10 strings for n = 1, 6 strings for
n = 2, 4 strings for n = 3, 3 strings for n = 4, and 1 string
each for n > 5.

To test the network an additional set of strings was created
consisting of one string of a"b™ each for 1 < n < 20. Because
echo state networks operate on real values, the strings were
encoded with a = 0 and b = 1. The order of the strings was
randomized before training and testing.

4. EXPERIMENTS

All experiments were performed using the Reservoir Com-
puting Toolbox' for MATLAB. Four different experiments
were performed with a different size reservoir used in each
experiment. The reservoir size was evaluated containing 25,
50, 100, and 200 neurons.

If the network learns to count it should be able to predict
the start of a sequence with a by, given the number of as that
were presented previously, counting how many bs have been
presented thus far and predicting an a after the number of
bs seen is equal to the previous number of as seen. In terms
of the coding used, this means that the network should be
able to predict the transitions from 1 to 0, but should not
be able to predict the transitions from 0 to 1, because given

'Reservoir Computing Toolbox:
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a string of as the next symbol could be either an a in the
current string or a b signaling the end of the current string.

The network is presented with randomly ordered context
free grammars a"b™ with n distributed as shown above in
Section 3.2. These randomly ordered strings are concate-
nated to form a single long string with 204 0s and 1s. Again
following the training procedure used in Rodriguez et al.
[1999], the network is trained using the presentation of 13
examples of different 204 character strings. To evaluate the
experiments performed we use the normalized mean square
error (NMSE) of the training and testing sets.

S. RESULTS

The results show a very clear trend indicating that net-
works with reservoirs that have a smaller number of neurons
are able to generalize better and produce improved perfor-
mance on the test set, while networks with reservoirs that
have more neurons tend to have lower scores on the training
set but do not generalize their results to the test set well. A
reservoir of 25 neurons produces the best results on the test
set, as indicated by the lowest test NMSE score, as shown
in Table 1.

Experiment | Training NMSE | Test NMSE
25 Neurons 0.6784 0.4877
50 Neurons 0.5247 0.5562
100 Neurons 0.4008 0.7173
200 Neurons 0.1427 0.8968

Table 1: Results from simulating deterministic con-
text free grammars using echo state networks with
reservoirs of different size.

Given that half of the transitions should be unpredictable,
the 25 neuron reservoir’s test NMSE score of 0.4877 is im-
pressive and shows that the network appears to have learned
to count. The 50 neuron reservoir’s test NMSE score of
0.5562 is similarly impressive and indicates that the net-
work has also learned to count. The 100 neuron reservoir
network has a higher test NMSE score and it is unclear from
these results alone that it has learned to count. Below we
will argue that, based on signals found by its output neu-
rons, it has learned to find a significant amount of structure
in the input signal and can count. The 200 neuron reservoir
network has a significantly higher test NMSE score and does
not appear to have learned to count.

5.1 The 25 neuron reservoir

Figure 2 shows the output of the 25 neuron reservoir net-
work compared against what is expected for the test results.
Recall that it is the transitions from 1 to 0 (that is b to a)
which should be predictable by the network. If we only con-
sider these transitions, that is look at only the beginning of
the red lines at the y-axis value of 0 towards the bottom of
the chart — in what resembles a saw tooth, it is clear that
the network does a good job of predicting this part of the
signal. Perhaps somewhat surprising, given the theoretical
underpinnings, is that the simulated value, represented by
the blue line, very often matches the signal, the red line, at
the upper left of each saw tooth, which is the transition from
0 to 1 and should be unpredictable.
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Figure 2: Expected output and simulated output for
a reservoir of size 25. The expected output is indi-
cated in red, and is either 0 or 1, while the simulated
output is in blue.

It is not particularly clear how the network is solving the
task. We see that often from the peak of the predicted value
of the signal, at y-axis value 1, the signal slowly decreases
and then sharply declines to match the target signal, as if
it were counting down until the appearance of another 0.
A “counting down” solution of this form would match the
functioning of the simple recurrent networks developed in
the original work of Rodriguez et al. [1999].

5.2 The 50 neuron reservoir

To determine whether this prediction pattern holds up
across multiple networks we present the output of the 50
neuron reservoir network compared against what is expected
for the test results in Figure 3. As can be seen, the network’s
solution to this problem shows precisely the same pattern as
with the 25 neuron reservoir. However, with the 50 neuron
reservoir solution it appears that the transitions from 0 to 1
may be more accurately predicted than the transitions from
1 to 0. Many of the transitions show the same counting
down pattern, where the generated signal slowly decreases
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Figure 3: Expected output and simulated output for
a reservoir of size 50. The expected output is indi-
cated in red, and is either 0 or 1, while the simulated
output is in blue.
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Figure 4: Expected output and simulated output
for a reservoir of size 100. The expected output
is indicated in red, and is either 0 or 1, while the
simulated output is in blue.

from the 1 value and then sharply declines when the target
signal reaches 0. In Section 6 below we’ll further investigate
this behavior.

5.3 The 100 and 200 neuron reservoirs

The test results for the 100 neuron reservoir network are
presented in Figure 4. The network with a 100 neuron reser-
voir shows the same pattern as the other networks but there
is significant degradation in its performance as it often over-
estimates the value 1. We see something similar to this in
the solution found using a 50 neuron reservoir. In Figure 3,
around the y-value 1 at position 200 on the x-axis, the esti-
mated value of the network is greater than 1, this problem is
exacerbated as the size of the reservoir increases. In the 200
neuron reservoir network overestimation is extremely prob-
lematic and largely responsible for the poor NMSE on the
test data set.

6. DISCUSSION

After examining the results above the question remains:
how do the echo state networks solve the task? To attempt
to answer this question we’ll examine graphs overlaying the
predictions of the multiple output neurons used by the echo
state network. In Figure 5, Figure 6, and Figure 7 the signal
from each output neuron is presented in a different color.

6.1 Examining output neuron signals

Figure 5 presents the outputs of the neurons used by the
25 neuron reservoir network. In it we see, towards the top
of the graph, a distinct output signal represented by the
blue line, and towards the bottom there is another distinct
output signal represented by the magenta line. Comparing
Figure 5 with the solution graph of the 25 neuron network
presented in Figure 2, note that the top signal, the blue
line, is very close to the output solution, it tracks the top of
the saw teeth. Referring back to Figure 5 we also see that
there are many neurons below 0 tracking the value of the
magenta line, more than there are above 0. The positive
output signal, shown in blue, balances the large number of
negative output signals to produce the minimum of 0 when
all signals head toward zero and the maximum of 1 when
signals diverge from 0.
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Figure 5: Overlay graph of the output neurons from
the network with a reservoir size of 25 neurons.
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Figure 6: Overlay graph of the output neurons from
the network with a reservoir size of 50 neurons.

In comparing the output neuron graph for the 50 neuron
reservoir network in Figure 6 to the performance graph of
the 50 neuron reservoir in Figure 3 we see a similar out-
lier signal, shown in green, that aligns with the saw tooth
pattern seen in the network’s solution. Even more than in
the output graph for the 25 neuron reservoir network (Fig-
ure 5), the 50 neuron reservoir output relies very heavily on
this single green signal to solve the problem. Additionally,
it is interesting that the blue output signal in Figure 6 only
appears at the shift from 0 to 1, seen at the start of each
increase in the green signal. This blue signal appears to
accurately predict the switch from 0 to 1.

Finally, in Figure 7, we see that the 100 neuron reservoir
network shows a similar pattern as that seen in the 25 and
50 neuron reservoirs. Note that in the 100 neuron reservoir
the output signals are significantly more well defined, that
is they seem to be following specific features in the input
signal, in contrast with the output signals for the 50 neuron
reservoir in Figure 6, which are much more chaotic. Most
importantly, the output neurons in Figure 7 have well de-
fined shifts to zero, showing that all the neurons agree on
when the value should be zero, although they often disagree
as to what the value should be when it is not zero.

A further interesting pattern in Figure 7 is the resem-
blance of the output neurons to a falling-off sound wave as
they decrease from their maximums to 0. It appears that
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Figure 7: Overlay graph of the output neurons from
the network with a reservoir size of 100 neurons.

this network, and the 25 neuron reservoir, which shows the
same pattern, are predicting the 0 value by slowly decreasing
all of their output signals towards 0. It also appears that the
networks may be able to estimate the unpredictable transi-
tion from 0 to 1 by converging from 0 upon reaching it. This
is clearly displayed just before the x-axis 400 value in Fig-
ure 7 where the signals all approach 0 and then immediately
spike to different non-0 values after having reached it.

6.2 Predicting the transition from 1 to 0

In Figure 5, Figure 6, and Figure 7 we see that the output
neurons agree significantly more on when the signal should
be 0 than when the signal should be 1. In the 25 neuron
reservoir graph and the 100 neuron reservoir graph, shown
in Figures 5 and 7 respectively, there are very clearly defined
points at which all signals converge and decrease to 0. In
these figures we also see that for the initial 0 value in the
target signal the various output neuron signals are highly
divergent and form no consensus prediction, as we would
expect since there is no data from which to predict this value.
In contrast, for the second 0 in the target signal all the
neuron predictions clearly converge to the 0 value, which is
now predictable.

This is indicative of the actual “counting” which is occur-
ring since it is the value of 0 — in the transition from 1 to
0 — which should be predictable by the network and indeed
is predictable by the network as all output signals confirm
this value. When the predicted value differs from 0 there is
high disagreement between output neurons, suggesting the
inability to find a clear signal in the data. The agreement on
0 values is the strongest evidence seen that these networks,
including the 100 neuron reservoir network, have learned to
count.

7. CONCLUSION

We have shown that echo state networks are able to pro-
duce results simulating a deterministic context free gram-
mar and perform the same function of “counting without a
counter” as produced with simple recurrent neural networks
in Rodriguez et al. [1999]. Reservoirs with fewer neurons are
able to produce results which generalize to new data better
than reservoirs with more neurons, indicating that using a
reservoir with too many neurons can lead to over-fitting.



However, networks with a larger reservoir are more capable
of clearly identifying features within the input signal.

Based on superficial analysis the solutions produced by
the echo state networks appear to predict the unpredictable
transitions from 0 to 1 as well as the transitions from 1 to
0, the transitions which should be predictable. After deeper
analysis, focusing on the signals produced by the various
output neurons, it is clear that the network shows much
more agreement with respect to the predictable transitions
from 1 to 0 than the transitions from 0 to 1. This is what
we would expect from a network that is storing state with
regard to how many signals of one type have so far appeared.

Most significantly, the echo state network is able to solve
the problem after training the reservoir for 13 examples of
204 character strings presented once each. In the original
work the network was presented with about 249,000 strings
and trained for approximately 2 million sweeps (Rodriguez
et al. [1999]). The ability of the echo state network to pro-
duce competitive performance after significantly less train-
ing is quite impressive.

Further work includes evaluating different distributions
over the strings in the test set and performing more in depth
analysis of the networks used to solve the task. It would
also be interesting to discover whether or not the network
would be able to generalize with increased limitations in the
training set. Work could also be done using variations in
network connectivity or spectral radius.
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